Skip to main content

Neuronal Functions and Emerging Pharmacology of TAAR1

  • Chapter
  • First Online:
Taste and Smell

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 23))

Abstract

Trace amine-associated receptor 1 (TAAR1) is a member of TAAR family of G protein-coupled receptors (GPCRs). The members of this class of receptors discovered in 2001 have been found in some tissues ranging from the central nervous system to the olfactory epithelium and in some peripheral organs. The best studied receptor, TAAR1, is activated by a class of compounds named trace amines (TAs) that include compounds such as β-phenylethylamine (PEA), p-tyramine, octopamine, and tryptamine normally present at low levels in the mammalian brain. Although TA levels have been associated with many neuropsychiatric disorders, only the discovery of TAAR1 validated their physiological role. TAAR1 can modulate monoamine neurotransmission and, in particular, dopamine systems. Several studies have demonstrated that TAAR1 knockout (TAAR1-KO) mice display a supersensitive dopaminergic system, while activation of TAAR1 can reduce dopaminergic hyperactivity obtained either with pharmacological tools or present in genetic mouse model. For these reasons, TAAR1 has been proposed as a novel therapeutic target for neuropsychiatric disorders such as schizophrenia, bipolar disorder, and addiction. Moreover, several peripheral functions of TAAR1 have been described recently indicating intriguing novel TAAR1 roles in system physiology. Here we will review brain and peripheral functions mediated by TAAR1 and other TAARs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A 98(16):8966–8971

    Article  CAS  Google Scholar 

  2. Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60(6):1181–1188

    CAS  Google Scholar 

  3. Grandy DK (2007) Trace amine-associated receptor 1-family archetype or iconoclast? Pharmacol Ther 116(3):355–390

    Article  CAS  Google Scholar 

  4. Lindemann L, Hoener MC (2005) A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci 26(5):274–281

    Article  CAS  Google Scholar 

  5. Miller GM (2012) Avenues for the development of therapeutics that target trace amine associated receptor 1 (TAAR1). J Med Chem 55(5):1809–1814

    Article  CAS  Google Scholar 

  6. Sotnikova TD, Caron MG, Gainetdinov RR (2009) Trace amine-associated receptors as emerging therapeutic targets. Mol Pharmacol 76(2):229–235

    Article  CAS  Google Scholar 

  7. Pei Y, Lee JA, Leo D, Gainetdinov RR, Hoener MC, Canales JJ (2014) Activation of the trace amine-associated receptor 1 prevents relapse to cocaine seeking. Neuropsychopharmacology 39:2299–2308

    Article  CAS  Google Scholar 

  8. Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, Pinard A, Buchy D, Gassmann M, Hoener MC, Bettler B (2009) The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci U S A 106:20081–20086

    Article  CAS  Google Scholar 

  9. Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, Trube G, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci U S A 108(20):8485–8490

    Article  CAS  Google Scholar 

  10. Revel FG, Moreau JL, Gainetdinov RR, Ferragud A, Velazquez-Sanchez C, Sotnikova TD, Morairty SR, Harmeier A, Groebke Zbinden K, Norcross RD, Bradaia A, Kilduff TS, Biemans B, Pouzet B, Caron MG, Canales JJ, Wallace TL, Wettstein JG, Hoener MC (2012) Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol Psychiatry 72(11):934–942

    Article  CAS  Google Scholar 

  11. Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, Metzler V, Chaboz S, Groebke Zbinden K, Galley G, Norcross RD, Tuerck D, Bruns A, Morairty SR, Kilduff TS, Wallace TL, Risterucci C, Wettstein JG, Hoener MC (2013) A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry 18(5):543–556

    Article  CAS  Google Scholar 

  12. Thorn DA, Jing L, Qiu Y, Gancarz-Kausch AM, Galuska CM, Dietz DM, Zhang Y, Li JX (2014) Effects of the trace amine associated receptor 1 agonist RO5263397 on abuse-related effects of cocaine in rats. Neuropsychopharmacology 39:2309–2316

    Article  CAS  Google Scholar 

  13. Sandler M, Ruthven CR, Goodwin BL, Reynolds GP, Rao VA, Coppen A (1980) Trace amine deficit in depressive illness: the phenylalanine connexion. Acta Psychiatr Scand Suppl 280:29–39

    CAS  Google Scholar 

  14. Berry MD (2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90(2):257–271

    Article  CAS  Google Scholar 

  15. Boulton AA (1980) Trace amines and mental disorders. Can J Neurol Sci 7(3):261–263

    Article  CAS  Google Scholar 

  16. Branchek TA, Blackburn TP (2003) Trace amine receptors as targets for novel therapeutics: legend, myth and fact. Curr Opin Pharmacol 3(1):90–97

    Article  CAS  Google Scholar 

  17. Berry MD (2007) The potential of trace amines and their receptors for treating neurological and psychiatric diseases. Rev Recent Clin Trials 2(1):3–19

    Article  CAS  Google Scholar 

  18. Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442(7103):645–650

    Article  CAS  Google Scholar 

  19. Sotnikova TD, Beaulieu JM, Espinoza S, Masri B, Zhang X, Salahpour A, Barak LS, Caron MG, Gainetdinov RR (2010) The dopamine metabolite 3-methoxytyramine is a neuromodulator. PLoS One 5(10):e13452

    Article  Google Scholar 

  20. Yang HY, Neff NH (1973) Beta-phenylethylamine: a specific substrate for type B monoamine oxidase of brain. J Pharmacol Exp Ther 187(2):365–371

    CAS  Google Scholar 

  21. Durden DA, Philips SR (1980) Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain. J Neurochem 34(6):1725–1732

    Article  CAS  Google Scholar 

  22. Philips SR, Boulton AA (1979) The effect of monoamine oxidase inhibitors on some arylalkylamines in rate striatum. J Neurochem 33(1):159–167

    Article  CAS  Google Scholar 

  23. Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD, Karoum F, Gal J, Shih JC (1997) Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet 17(2):206–210

    Article  CAS  Google Scholar 

  24. Juorio AV, Philips SR (1976) Arylalkylamines in Octopus tissues. Neurochem Res 1(5):501–509

    Article  CAS  Google Scholar 

  25. Robertson HA, Juorio AV (1976) Octopamine and some related noncatecholic amines in invertebrate nervous systems. Int Rev Neurobiol 19:173–224

    Article  CAS  Google Scholar 

  26. Parker EM, Cubeddu LX (1988) Comparative effects of amphetamine, phenylethylamine and related drugs on dopamine efflux, dopamine uptake and mazindol binding. J Pharmacol Exp Ther 245(1):199–210

    CAS  Google Scholar 

  27. Fuxe K, Grobecker H, Jonsson J (1967) The effect of beta-phenylethylamine on central and peripheral monoamine-containing neurons. Eur J Pharmacol 2(3):202–207

    Article  CAS  Google Scholar 

  28. Raiteri M, Del Carmine R, Bertollini A, Levi G (1977) Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Eur J Pharmacol 41(2):133–143

    Article  CAS  Google Scholar 

  29. Sotnikova TD, Budygin EA, Jones SR, Dykstra LA, Caron MG, Gainetdinov RR (2004) Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine. J Neurochem 91(2):362–373

    Article  CAS  Google Scholar 

  30. Wolinsky TD, Swanson CJ, Smith KE, Zhong H, Borowsky B, Seeman P, Branchek T, Gerald CP (2007) The trace amine 1 receptor knockout mouse: an animal model with relevance to schizophrenia. Genes Brain Behav 6(7):628–639

    Article  CAS  Google Scholar 

  31. Wainscott DB, Little SP, Yin T, Tu Y, Rocco VP, He JX, Nelson DL (2007) Pharmacologic characterization of the cloned human trace amine-associated receptor 1 (TAAR1) and evidence for species differences with the rat TAAR1. J Pharmacol Exp Ther 320(1):475–485

    Article  CAS  Google Scholar 

  32. Navarro HA, Gilmour BP, Lewin AH (2006) A rapid functional assay for the human trace amine-associated receptor 1 based on the mobilization of internal calcium. J Biomol Screen 11(6):688–693

    Article  CAS  Google Scholar 

  33. Miller GM, Verrico CD, Jassen A, Konar M, Yang H, Panas H, Bahn M, Johnson R, Madras BK (2005) Primate trace amine receptor 1 modulation by the dopamine transporter. J Pharmacol Exp Ther 313(3):983–994

    Article  CAS  Google Scholar 

  34. Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, Bettler B, Wettstein JG, Borroni E, Moreau JL, Hoener MC (2008) Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther 324(3):948–956

    Article  CAS  Google Scholar 

  35. Lewin AH, Navarro HA, Mascarella SW (2008) Structure-activity correlations for beta-phenethylamines at human trace amine receptor 1. Bioorg Med Chem 16(15):7415–7423

    Article  CAS  Google Scholar 

  36. Barak LS, Salahpour A, Zhang X, Masri B, Sotnikova TD, Ramsey AJ, Violin JD, Lefkowitz RJ, Caron MG, Gainetdinov RR (2008) Pharmacological characterization of membrane-expressed human trace amine-associated receptor 1 (TAAR1) by a bioluminescence resonance energy transfer cAMP biosensor. Mol Pharmacol 74(3):585–594

    Article  CAS  Google Scholar 

  37. Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33(7):3228–3239

    Article  CAS  Google Scholar 

  38. Babusyte A, Kotthoff M, Fiedler J, Krautwurst D (2013) Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. J Leukoc Biol 93(3):387–394

    Article  CAS  Google Scholar 

  39. Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC (2005) Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85(3):372–385

    Article  CAS  Google Scholar 

  40. Duan J, Martinez M, Sanders AR, Hou C, Saitou N, Kitano T, Mowry BJ, Crowe RR, Silverman JM, Levinson DF, Gejman PV (2004) Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. Am J Hum Genet 75(4):624–638

    Article  CAS  Google Scholar 

  41. Xie Z, Miller GM (2007) Trace amine-associated receptor 1 is a modulator of the dopamine transporter. J Pharmacol Exp Ther 321(1):128–136

    Article  CAS  Google Scholar 

  42. Pae CU, Drago A, Kim JJ, Patkar AA, Jun TY, De Ronchi D, Serretti A (2010) TAAR6 variations possibly associated with antidepressant response and suicidal behavior. Psychiatry Res 180(1):20–24

    Article  CAS  Google Scholar 

  43. Wasik AM, Millan MJ, Scanlan T, Barnes NM, Gordon J (2012) Evidence for functional trace amine associated receptor-1 in normal and malignant B cells. Leuk Res 36(2):245–249

    Article  CAS  Google Scholar 

  44. Panas MW, Xie Z, Panas HN, Hoener MC, Vallender EJ, Miller GM (2012) Trace amine associated receptor 1 signaling in activated lymphocytes. J Neuroimmune Pharmacol 7(4):866–876

    Article  Google Scholar 

  45. Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, DeBarber A, Brogioni S, Ronca-Testoni S, Cerbai E, Grandy DK, Scanlan TS, Zucchi R (2007) Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J 21(7):1597–1608

    Article  CAS  Google Scholar 

  46. Di Cara B, Maggio R, Aloisi G, Rivet JM, Lundius EG, Yoshitake T, Svenningsson P, Brocco M, Gobert A, De Groote L, Cistarelli L, Veiga S, De Montrion C, Rodriguez M, Galizzi JP, Lockhart BP, Coge F, Boutin JA, Vayer P, Verdouw PM, Groenink L, Millan MJ (2011) Genetic deletion of trace amine 1 receptors reveals their role in auto-inhibiting the actions of ecstasy (MDMA). J Neurosci 31(47):16928–16940

    Article  Google Scholar 

  47. Reese EA, Bunzow JR, Arttamangkul S, Sonders MS, Grandy DK (2007) Trace amine-associated receptor 1 displays species-dependent stereoselectivity for isomers of methamphetamine, amphetamine, and para-hydroxyamphetamine. J Pharmacol Exp Ther 321(1):178–186

    Article  CAS  Google Scholar 

  48. Barak LS, Ferguson SS, Zhang J, Caron MG (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272(44):27497–27500

    Article  CAS  Google Scholar 

  49. Kim KM, Gainetdinov RR, Laporte SA, Caron MG, Barak LS (2005) G protein-coupled receptor kinase regulates dopamine D3 receptor signaling by modulating the stability of a receptor-filamin-beta-arrestin complex. A case of autoreceptor regulation. J Biol Chem 280(13):12774–12780

    Article  CAS  Google Scholar 

  50. Xie Z, Westmoreland SV, Bahn ME, Chen GL, Yang H, Vallender EJ, Yao WD, Madras BK, Miller GM (2007) Rhesus monkey trace amine-associated receptor 1 signaling: enhancement by monoamine transporters and attenuation by the D2 autoreceptor in vitro. J Pharmacol Exp Ther 321(1):116–127

    Article  CAS  Google Scholar 

  51. Asghar SJ, Tanay VA, Baker GB, Greenshaw A, Silverstone PH (2003) Relationship of plasma amphetamine levels to physiological, subjective, cognitive and biochemical measures in healthy volunteers. Hum Psychopharmacol 18(4):291–299

    Article  CAS  Google Scholar 

  52. Bowyer JF, Young JF, Slikker W, Itzak Y, Mayorga AJ, Newport GD, Ali SF, Frederick DL, Paule MG (2003) Plasma levels of parent compound and metabolites after doses of either d-fenfluramine or d-3,4-methylenedioxymethamphetamine (MDMA) that produce long-term serotonergic alterations. Neurotoxicology 24(3):379–390

    Article  CAS  Google Scholar 

  53. Hart ME, Suchland KL, Miyakawa M, Bunzow JR, Grandy DK, Scanlan TS (2006) Trace amine-associated receptor agonists: synthesis and evaluation of thyronamines and related analogues. J Med Chem 49(3):1101–1112

    Article  CAS  Google Scholar 

  54. Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10(6):638–642

    Article  CAS  Google Scholar 

  55. Tan ES, Groban ES, Jacobson MP, Scanlan TS (2008) Toward deciphering the code to aminergic G protein-coupled receptor drug design. Chem Biol 15(4):343–353

    Article  CAS  Google Scholar 

  56. Frascarelli S, Ghelardoni S, Chiellini G, Vargiu R, Ronca-Testoni S, Scanlan TS, Grandy DK, Zucchi R (2008) Cardiac effects of trace amines: pharmacological characterization of trace amine-associated receptors. Eur J Pharmacol 587(1–3):231–236

    Article  CAS  Google Scholar 

  57. Snead AN, Miyakawa M, Tan ES, Scanlan TS (2008) Trace amine-associated receptor 1 (TAAR1) is activated by amiodarone metabolites. Bioorg Med Chem Lett 18(22):5920–5922

    Article  CAS  Google Scholar 

  58. Snead AN, Santos MS, Seal RP, Miyakawa M, Edwards RH, Scanlan TS (2007) Thyronamines inhibit plasma membrane and vesicular monoamine transport. ACS Chem Biol 2(6):390–398

    Article  CAS  Google Scholar 

  59. Kehr W (1976) 3-Methoxytyramine as an indicator of impulse-induced dopamine release in rat brain in vivo. Naunyn Schmiedebergs Arch Pharmacol 293(3):209–215

    Article  CAS  Google Scholar 

  60. Rajput AH, Fenton ME, Di Paolo T, Sitte H, Pifl C, Hornykiewicz O (2004) Human brain dopamine metabolism in levodopa-induced dyskinesia and wearing-off. Parkinsonism Relat Disord 10(4):221–226

    Article  Google Scholar 

  61. Xuehong L, Grandy DK, Janowsky AJ (2014) Ractopamine, a livestock feed additive, is a full agonist at trace amine-associated receptor 1. J Pharmacol Exp Ther 350:124–129

    Google Scholar 

  62. Tallman KR, Grandy DK (2012) A decade of pharma discovery delivers new tools targeting trace amine-associated receptor 1. Neuropsychopharmacology 37(12):2553–2554

    Article  CAS  Google Scholar 

  63. Cichero E, Espinoza S, Gainetdinov RR, Brasili L, Fossa P (2013) Insights into the structure and pharmacology of the human trace amine-associated receptor 1 (hTAAR1): homology modelling and docking studies. Chem Biol Drug Des 81(4):509–516

    Article  CAS  Google Scholar 

  64. Reese EA, Norimatsu Y, Grandy MS, Suchland KL, Bunzow JR, Grandy DK (2014) Exploring the determinants of trace amine-associated receptor 1’s functional selectivity for the stereoisomers of amphetamine and methamphetamine. J Med Chem 57(2):378–390

    Article  CAS  Google Scholar 

  65. Sandler M, Reynolds GP (1976) Does phenylethylamine cause schizophrenia? Lancet 1(7950):70–71

    Article  CAS  Google Scholar 

  66. D’Andrea G, Terrazzino S, Fortin D, Cocco P, Balbi T, Leon A (2003) Elusive amines and primary headaches: historical background and prospectives. Neurol Sci 24(Suppl 2):S65–S67

    Google Scholar 

  67. Shirkande S, O’Reilly R, Davis B, Durden D, Malcom D (1995) Plasma phenylethylamine levels of schizophrenic patients. Can J Psychiatry 40(4):221

    CAS  Google Scholar 

  68. Potkin SG, Karoum F, Chuang LW, Cannon-Spoor HE, Phillips I, Wyatt RJ (1979) Phenylethylamine in paranoid chronic schizophrenia. Science 206(4417):470–471

    Article  CAS  Google Scholar 

  69. Seeman P, Weinshenker D, Quirion R, Srivastava LK, Bhardwaj SK, Grandy DK, Premont RT, Sotnikova TD, Boksa P, El-Ghundi M, O’Dowd BF, George SR, Perreault ML, Mannisto PT, Robinson S, Palmiter RD, Tallerico T (2005) Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proc Natl Acad Sci U S A 102(9):3513–3518

    Article  CAS  Google Scholar 

  70. Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther 295(3):853–861

    CAS  Google Scholar 

  71. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152

    Article  CAS  Google Scholar 

  72. Gardier AM, Malagie I, Trillat AC, Jacquot C, Artigas F (1996) Role of 5-HT1A autoreceptors in the mechanism of action of serotoninergic antidepressant drugs: recent findings from in vivo microdialysis studies. Fundam Clin Pharmacol 10(1):16–27

    Article  CAS  Google Scholar 

  73. Leo D, Mus L, Espinoza S, Hoener MC, Sotnikova TD, Gainetdinov RR (2014) Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors. Neuropharmacology 81:283–291

    Article  CAS  Google Scholar 

  74. Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, Caron MG, Gainetdinov RR (2011) Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol Pharmacol 80(3):416–425

    Article  CAS  Google Scholar 

  75. Xie Z, Westmoreland SV, Miller GM (2008) Modulation of monoamine transporters by common biogenic amines via trace amine-associated receptor 1 and monoamine autoreceptors in human embryonic kidney 293 cells and brain synaptosomes. J Pharmacol Exp Ther 325(2):629–640

    Article  CAS  Google Scholar 

  76. Xie Z, Miller GM (2009) Trace amine-associated receptor 1 as a monoaminergic modulator in brain. Biochem Pharmacol 78(9):1095–1104

    Article  CAS  Google Scholar 

  77. Xie Z, Miller GM (2008) Beta-phenylethylamine alters monoamine transporter function via trace amine-associated receptor 1: implication for modulatory roles of trace amines in brain. J Pharmacol Exp Ther 325(2):617–628

    Article  CAS  Google Scholar 

  78. Sukhanov I, Espinoza S, Yakovlev DS, Hoener MC, Sotnikova TD, Gainetdinov RR (2014) TAAR1-dependent effects of apomorphine in mice. Int J Neuropsychopharmacol 17:1683–1693

    Article  CAS  Google Scholar 

  79. Costall B, Naylor RJ, Nohria V (1978) Climbing behaviour induced by apomorphine in mice: a potential model for the detection of neuroleptic activity. Eur J Pharmacol 50(1):39–50

    Article  CAS  Google Scholar 

  80. Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69(4):628–649

    Article  CAS  Google Scholar 

  81. Achat-Mendes C, Lynch LJ, Sullivan KA, Vallender EJ, Miller GM (2012) Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1. Pharmacol Biochem Behav 101(2):201–207

    Article  CAS  Google Scholar 

  82. Lynch LJ, Sullivan KA, Vallender EJ, Rowlett JK, Platt DM, Miller GM (2013) Trace amine associated receptor 1 modulates behavioral effects of ethanol. Subst Abuse 7:117–126

    CAS  Google Scholar 

  83. Fuchs RA, Branham RK, See RE (2006) Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J Neurosci 26(13):3584–3588

    Article  CAS  Google Scholar 

  84. Thorn DA, Zhang C, Zhang Y, Li JX (2014) The trace amine associated receptor 1 agonist RO5263397 attenuates the induction of cocaine behavioral sensitization in rats. Neurosci Lett 566:67–71

    Article  CAS  Google Scholar 

  85. Zucchi R, Chiellini G, Scanlan TS, Grandy DK (2006) Trace amine-associated receptors and their ligands. Br J Pharmacol 149(8):967–978

    Article  CAS  Google Scholar 

  86. Panas HN, Lynch LJ, Vallender EJ, Xie Z, Chen GL, Lynn SK, Scanlan TS, Miller GM (2010) Normal thermoregulatory responses to 3-iodothyronamine, trace amines and amphetamine-like psychostimulants in trace amine associated receptor 1 knockout mice. J Neurosci Res 88:1962–1969

    CAS  Google Scholar 

  87. Nelson DA, Tolbert MD, Singh SJ, Bost KL (2007) Expression of neuronal trace amine-associated receptor (TAAR) mRNAs in leukocytes. J Neuroimmunol 192(1–2):21–30

    Article  CAS  Google Scholar 

  88. Meredith EJ, Holder MJ, Chamba A, Challa A, Drake-Lee A, Bunce CM, Drayson MT, Pilkington G, Blakely RD, Dyer MJ, Barnes NM, Gordon J (2005) The serotonin transporter (SLC6A4) is present in B-cell clones of diverse malignant origin: probing a potential anti-tumor target for psychotropics. FASEB J 19(9):1187–1189

    CAS  Google Scholar 

  89. Chamba A, Holder MJ, Jarrett RF, Shield L, Toellner KM, Drayson MT, Barnes NM, Gordon J (2010) SLC6A4 expression and anti-proliferative responses to serotonin transporter ligands chlomipramine and fluoxetine in primary B-cell malignancies. Leuk Res 34(8):1103–1106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul R. Gainetdinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Espinoza, S., Gainetdinov, R.R. (2014). Neuronal Functions and Emerging Pharmacology of TAAR1. In: Krautwurst, D. (eds) Taste and Smell. Topics in Medicinal Chemistry, vol 23. Springer, Cham. https://doi.org/10.1007/7355_2014_78

Download citation

Publish with us

Policies and ethics