Skip to main content

Glutamate and Neurodegenerative Disease

  • Chapter
  • First Online:
Neurodegenerative Diseases

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 6))

Abstract

As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liguz-Lecznar M, Skangiel-Kramska J (2007) Vesicular glutamate transporters (VGLUTs): the three musketeers of glutamatergic system. Acta Neurobiol Exp 67:207–218

    Google Scholar 

  2. Bunch L, Erichsen MN, Jensen AA (2009) Excitatory amino acid transporters as potential drug targets. Expert Opin Ther Targets 13:719–731

    Article  CAS  Google Scholar 

  3. Bowie D (2008) Ionotropic glutamate receptors & CNS disorders. CNS Neurol Disord Drug Targets 7:129–143

    Article  CAS  Google Scholar 

  4. Lodge D (2009) The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology 56:6–21

    Article  CAS  Google Scholar 

  5. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  Google Scholar 

  6. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47:122–129

    Article  CAS  Google Scholar 

  7. Marek GJ, Behl B, Bespalov AY et al (2010) Glutamatergic (N-methyl-D-aspartate receptor) hypofrontality in schizophrenia: too little juice or a miswired brain? Mol Pharmacol 77:317–326

    Article  CAS  Google Scholar 

  8. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    Article  CAS  Google Scholar 

  9. Waxman EA, Lynch DR (2005) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11:37–49

    Article  CAS  Google Scholar 

  10. Burnashev N, Zhou Z, Neher E et al (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485(Pt 2):403–418

    CAS  Google Scholar 

  11. Garaschuk O, Schneggenburger R, Schirra C et al (1996) Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. J Physiol 491(Pt 3):757–772

    CAS  Google Scholar 

  12. Schneggenburger R (1996) Simultaneous measurement of Ca2+ influx and reversal potentials in recombinant N-methyl-D-aspartate receptor channels. Biophys J 70:2165–2174

    Article  CAS  Google Scholar 

  13. Dannhardt G, Kohl BK (1998) The glycine site on the NMDA receptor: structure-activity relationships and possible therapeutic applications. Curr Med Chem 5:253–263

    CAS  Google Scholar 

  14. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  CAS  Google Scholar 

  15. Wollmuth LP, Sobolevsky AI (2004) Structure and gating of the glutamate receptor ion channel. Trends Neurosci 27:321–328

    Article  CAS  Google Scholar 

  16. Malenka RC, Nicoll RA (1999) Long-term potentiation–a decade of progress? Science 285:1870–1874

    Article  CAS  Google Scholar 

  17. Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1:383–386

    Article  CAS  Google Scholar 

  18. Muir KW (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6:53–60

    Article  CAS  Google Scholar 

  19. Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26:81–89

    Article  CAS  Google Scholar 

  20. Pohl D, Bittigau P, Ishimaru MJ et al (1999) N-Methyl-d-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci USA 96:2508–2513

    Article  CAS  Google Scholar 

  21. Lipton SA, Nakanishi N (1999) Shakespeare in love–with NMDA receptors? Nat Med 5:270–271

    Article  CAS  Google Scholar 

  22. Collins MO, Husi H, Yu L et al (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97(Suppl 1):16–23

    Article  CAS  Google Scholar 

  23. Joyal JL, Burks DJ, Pons S et al (1997) Calmodulin activates phosphatidylinositol 3-kinase. J Biol Chem 272:28183–28186

    Article  CAS  Google Scholar 

  24. Lafon-Cazal M, Perez V, Bockaert J et al (2002) Akt mediates the anti-apoptotic effect of NMDA but not that induced by potassium depolarization in cultured cerebellar granule cells. Eur J Neurosci 16:575–583

    Article  Google Scholar 

  25. Wu GY, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 98:2808–2813

    Article  CAS  Google Scholar 

  26. Riccio A, Ahn S, Davenport CM et al (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286:2358–2361

    Article  CAS  Google Scholar 

  27. Walton M, Woodgate AM, Muravlev A et al (1999) CREB phosphorylation promotes nerve cell survival. J Neurochem 73:1836–1842

    CAS  Google Scholar 

  28. Lonze BE, Riccio A, Cohen S et al (2002) Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34:371–385

    Article  CAS  Google Scholar 

  29. Larson J, Lynch G, Games D et al (1999) Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res 840:23–35

    Article  CAS  Google Scholar 

  30. Yoshiyama Y, Higuchi M, Zhang B et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    Article  CAS  Google Scholar 

  31. Harkany T, Abraham I, Timmerman W et al (2000) beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci 12:2735–2745

    Article  CAS  Google Scholar 

  32. Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R et al (2002) Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res 958:210–221

    Article  CAS  Google Scholar 

  33. Lesne S, Ali C, Gabriel C et al (2005) NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci 25:9367–9377

    Article  CAS  Google Scholar 

  34. Goto Y, Niidome T, Akaike A et al (2006) Amyloid beta-peptide preconditioning reduces glutamate-induced neurotoxicity by promoting endocytosis of NMDA receptor. Biochem Biophys Res Commun 351:259–265

    Article  CAS  Google Scholar 

  35. Snyder EM, Nong Y, Almeida CG et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058

    Article  CAS  Google Scholar 

  36. Tyszkiewicz JP, Yan Z (2005) beta-Amyloid peptides impair PKC-dependent functions of metabotropic glutamate receptors in prefrontal cortical neurons. J Neurophysiol 93:3102–3111

    Article  CAS  Google Scholar 

  37. Kim AH, Khursigara G, Sun X et al (2001) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21:893–901

    Article  CAS  Google Scholar 

  38. Javitt DC (2006) Is the glycine site half saturated or half unsaturated? Effects of glutamatergic drugs in schizophrenia patients. Curr Opin Psychiatry 19:151–157

    Article  Google Scholar 

  39. Shimazaki T, Kaku A, Chaki S (2010) D-Serine and a glycine transporter-1 inhibitor enhance social memory in rats. Psychopharmacology 209:263–270

    Article  CAS  Google Scholar 

  40. Javitt DC (2009) Glycine transport inhibitors for the treatment of schizophrenia: symptom and disease modification. Curr Opin Drug Discov Dev 12:468–478

    CAS  Google Scholar 

  41. Johnson KA, Conn PJ, Niswender CM (2009) Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets 8:475–491

    Article  CAS  Google Scholar 

  42. Gotz T, Kraushaar U, Geiger J et al (1997) Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J Neurosci 17:204–215

    CAS  Google Scholar 

  43. Kaur S, Ozer H, Starr M (1997) MK 801 reverses haloperidol-induced catalepsy from both striatal and extrastriatal sites in the rat brain. Eur J Pharmacol 332:153–160

    Article  CAS  Google Scholar 

  44. McAllister KH (1996) The competitive NMDA receptor antagonist SDZ 220-581 reverses haloperidol-induced catalepsy in rats. Eur J Pharmacol 314:307–311

    Article  CAS  Google Scholar 

  45. Moore NA, Blackman A, Awere S et al (1993) NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists. Eur J Pharmacol 237:1–7

    Article  CAS  Google Scholar 

  46. Graham WC, Robertson RG, Sambrook MA et al (1990) Injection of excitatory amino acid antagonists into the medial pallidal segment of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated primate reverses motor symptoms of parkinsonism. Life Sci 47:PL91–PL97

    Google Scholar 

  47. Loschmann PA, De Groote C, Smith L et al (2004) Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp Neurol 187:86–93

    Article  CAS  Google Scholar 

  48. Steece-Collier K, Chambers LK, Jaw-Tsai SS et al (2000) Antiparkinsonian actions of CP-101, 606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors. Exp Neurol 163:239–243

    Article  CAS  Google Scholar 

  49. Stauch Slusher B, Rissolo KC, Jackson PF et al (1994) Centrally-administered glycine antagonists increase locomotion in monoamine-depleted mice. J Neural Transm Gen Sect 97:175–185

    Article  CAS  Google Scholar 

  50. Blanchet PJ, Konitsiotis S, Whittemore ER et al (1999) Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther 290:1034–1040

    CAS  Google Scholar 

  51. Marin C, Papa S, Engber TM et al (1996) MK-801 prevents levodopa-induced motor response alterations in parkinsonian rats. Brain Res 736:202–205

    Article  CAS  Google Scholar 

  52. Marti M, Paganini F, Stocchi S et al (2003) Plasticity of glutamatergic control of striatal acetylcholine release in experimental parkinsonism: opposite changes at group-II metabotropic and NMDA receptors. J Neurochem 84:792–802

    Article  CAS  Google Scholar 

  53. Group THsDCR (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  54. Gusella JF, MacDonald ME (1995) Huntington’s disease. Semin Cell Biol 6:21–28

    Article  CAS  Google Scholar 

  55. Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  CAS  Google Scholar 

  56. Cepeda C, Hurst RS, Calvert CR et al (2003) Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease. J Neurosci 23:961–969

    CAS  Google Scholar 

  57. Li L, Murphy TH, Hayden MR et al (2004) Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. J Neurophysiol 92:2738–2746

    Article  CAS  Google Scholar 

  58. Tang TS, Slow E, Lupu V et al (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci USA 102:2602–2607

    Article  CAS  Google Scholar 

  59. Heng MY, Detloff PJ, Wang PL et al (2009) In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci 29:3200–3205

    Article  CAS  Google Scholar 

  60. Zhang H, Li Q, Graham RK et al (2008) Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington’s disease. Neurobiol Dis 31:80–88

    Article  CAS  Google Scholar 

  61. Fan J, Cowan CM, Zhang LY et al (2009) Interaction of postsynaptic density protein-95 with NMDA receptors influences excitotoxicity in the yeast artificial chromosome mouse model of Huntington’s disease. J Neurosci 29:10928–10938

    Article  CAS  Google Scholar 

  62. Sun Y, Savanenin A, Reddy PH et al (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 276:24713–24718

    Article  CAS  Google Scholar 

  63. Zeron MM, Chen N, Moshaver A et al (2001) Mutant huntingtin enhances excitotoxic cell death. Mol Cell Neurosci 17:41–53

    Article  CAS  Google Scholar 

  64. Fan MM, Raymond LA (2007) N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol 81:272–293

    Article  CAS  Google Scholar 

  65. Milnerwood AJ, Gladding CM, Pouladi MA et al (2010) Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 65:178–190

    Article  CAS  Google Scholar 

  66. Okamoto S, Pouladi MA, Talantova M et al (2009) Balance between synaptic versus extrasynaptic NMDA receptor act ivity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 15:1407–1413

    Article  CAS  Google Scholar 

  67. Newcomer JW, Krystal JH (2001) NMDA receptor regulation of memory and behavior in humans. Hippocampus 11:529–542

    Article  CAS  Google Scholar 

  68. Heresco-Levy U (2005) Glutamatergic neurotransmission modulators as emerging new drugs for schizophrenia. Expert Opin Emerg Drugs 10:827–844

    Article  CAS  Google Scholar 

  69. Urwyler S, Floersheim P, Roy BL et al (2009) Drug design, in vitro pharmacology, and structure-activity relationships of 3-acylamino-2-aminopropionic acid derivatives, a novel class of partial agonists at the glycine site on the N-methyl-D-aspartate (NMDA) receptor complex. J Med Chem 52:5093–5107

    Article  CAS  Google Scholar 

  70. Harsing LG Jr, Juranyi Z, Gacsalyi I et al (2006) Glycine transporter type-1 and its inhibitors. Curr Med Chem 13:1017–1044

    Article  CAS  Google Scholar 

  71. Sur C, Kinney GG (2007) Glycine transporter 1 inhibitors and modulation of NMDA receptor-mediated excitatory neurotransmission. Curr Drug Targets 8:643–649

    Article  CAS  Google Scholar 

  72. Duplantier AJ, Becker SL, Bohanon MJ et al (2009) Discovery, SAR, and pharmacokinetics of a novel 3-hydroxyquinolin-2(1H)-one series of potent D-amino acid oxidase (DAAO) inhibitors. J Med Chem 52:3576–3585

    Article  CAS  Google Scholar 

  73. Williams M (2009) Commentary: genome-based CNS drug discovery: D-amino acid oxidase (DAAO) as a novel target for antipsychotic medications: progress and challenges. Biochem Pharmacol 78:1360–1365

    Article  CAS  Google Scholar 

  74. Johnson JW, Kotermanski SE (2006) Mechanism of action of memantine. Curr Opin Pharmacol 6:61–67

    Article  CAS  Google Scholar 

  75. Kotermanski SE, Johnson JW (2009) Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J Neurosci 29:2774–2779

    Article  CAS  Google Scholar 

  76. Ferris SH (2003) Evaluation of memantine for the treatment of Alzheimer’s disease. Expert Opin Pharmacother 4:2305–2313

    Article  CAS  Google Scholar 

  77. Mobius HJ, Stoffler A, Graham SM (2004) Memantine hydrochloride: pharmacological and clinical profile. Drugs Today 40:685–695

    Article  Google Scholar 

  78. Parsons CG, Danysz W, Quack G (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist–a review of preclinical data. Neuropharmacology 38:735–767

    Article  CAS  Google Scholar 

  79. Cai SX (2006) Glycine/NMDA receptor antagonists as potential CNS therapeutic agents: ACEA-1021 and related compounds. Curr Top Med Chem 6:651–662

    Article  CAS  Google Scholar 

  80. Catarzi D, Colotta V, Varano F (2006) Competitive Gly/NMDA receptor antagonists. Curr Top Med Chem 6:809–821

    Article  CAS  Google Scholar 

  81. Nagata R, Katayama S, Ohtani K et al (2006) Tricyclic quinoxalinediones, aza-kynurenic acids, and indole-2-carboxylic acids as in vivo active NMDA-glycine antagonists. Curr Top Med Chem 6:733–745

    Article  CAS  Google Scholar 

  82. Hargreaves RJ, Rigby M, Smith D et al (1993) Lack of effect of L-687, 414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology. Br J Pharmacol 110:36–42

    Article  CAS  Google Scholar 

  83. Hawkinson JE, Huber KR, Sahota PS et al (1997) The N-methyl-D-aspartate (NMDA) receptor glycine site antagonist ACEA 1021 does not produce pathological changes in rat brain. Brain Res 744:227–234

    Article  CAS  Google Scholar 

  84. Feng B, Morley RM, Jane DE et al (2005) The effect of competitive antagonist chain length on NMDA receptor subunit selectivity. Neuropharmacology 48:354–359

    Article  CAS  Google Scholar 

  85. Morley RM, Tse HW, Feng B et al (2005) Synthesis and pharmacology of N1-substituted piperazine-2, 3-dicarboxylic acid derivatives acting as NMDA receptor antagonists. J Med Chem 48:2627–2637

    Article  CAS  Google Scholar 

  86. Neyton J, Paoletti P (2006) Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci 26:1331–1333

    Article  CAS  Google Scholar 

  87. Borza I, Domany G (2006) NR2B selective NMDA antagonists: the evolution of the ifenprodil-type pharmacophore. Curr Top Med Chem 6:687–695

    Article  CAS  Google Scholar 

  88. Mony L, Kew JN, Gunthorpe MJ et al (2009) Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol 157:1301–1317

    Article  CAS  Google Scholar 

  89. Hadj Tahar A, Gregoire L, Darre A et al (2004) Effect of a selective glutamate antagonist on L-dopa-induced dyskinesias in drug-naive parkinsonian monkeys. Neurobiol Dis 15:171–176

    Article  CAS  Google Scholar 

  90. Ouattara B, Belkhir S, Morissette M et al (2009) Implication of NMDA receptors in the antidyskinetic activity of cabergoline, CI-1041, and Ro 61-8048 in MPTP monkeys with levodopa-induced dyskinesias. J Mol Neurosci 38:128–142

    Article  CAS  Google Scholar 

  91. Tahirovic YA, Geballe M, Gruszecka-Kowalik E et al (2008) Enantiomeric propanolamines as selective N-methyl-D-aspartate 2B receptor antagonists. J Med Chem 51:5506–5521

    Article  CAS  Google Scholar 

  92. Marinelli L, Cosconati S, Steinbrecher T et al (2007) Homology modeling of NR2B modulatory domain of NMDA receptor and analysis of ifenprodil binding. ChemMedChem 2:1498–1510

    Article  CAS  Google Scholar 

  93. Gitto R, De Luca L, Ferro S et al (2008) Computational studies to discover a new NR2B/NMDA receptor antagonist and evaluation of pharmacological profile. ChemMedChem 3:1539–1548

    Article  CAS  Google Scholar 

  94. Wee XK, Ng KS, Leung HW et al (2010) Mapping the high-affinity binding domain of 5-substituted benzimidazoles to the proximal N-terminus of the GluN2B subunit of the NMDA receptor. Br J Pharmacol 159:449–461

    Article  CAS  Google Scholar 

  95. Jiang SX, Zheng RY, Zeng JQ et al (2010) Reversible inhibition of intracellular calcium influx through NMDA receptors by imidazoline I(2) receptor antagonists. Eur J Pharmacol 629:12–19

    Article  CAS  Google Scholar 

  96. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  CAS  Google Scholar 

  97. Dingledine R, Borges K, Bowie D et al (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  Google Scholar 

  98. Madden DR (2002) The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3:91–101

    Article  CAS  Google Scholar 

  99. Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280:1596–1599

    Article  CAS  Google Scholar 

  100. Koike M, Tsukada S, Tsuzuki K et al (2000) Regulation of kinetic properties of GluR2 AMPA receptor channels by alternative splicing. J Neurosci 20:2166–2174

    CAS  Google Scholar 

  101. Bronson JR, Zhang Z, Vandenberghe W (1999) Ca(2+) permeation of AMPA receptors in cerebellar neurons expressing glu receptor 2. J Neurosci 19:9149–9159

    Google Scholar 

  102. Burnashev N, Monyer H, Seeburg PH et al (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189–198

    Article  CAS  Google Scholar 

  103. Blackstone CD, Moss SJ, Martin LJ et al (1992) Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain. J Neurochem 58:1118–1126

    Article  CAS  Google Scholar 

  104. Conti F, Weinberg RJ (1999) Shaping excitation at glutamatergic synapses. Trends Neurosci 22:451–458

    Article  CAS  Google Scholar 

  105. Morari M, Sbrenna S, Marti M et al (1998) NMDA and non-NMDA ionotropic glutamate receptors modulate striatal acetylcholine release via pre- and postsynaptic mechanisms. J Neurochem 71:2006–2017

    Article  CAS  Google Scholar 

  106. Patel DR, Croucher MJ (1997) Evidence for a role of presynaptic AMPA receptors in the control of neuronal glutamate release in the rat forebrain. Eur J Pharmacol 332:143–151

    Article  CAS  Google Scholar 

  107. Schenk S, Matteoli M (2004) Presynaptic AMPA receptors: more than just ion channels? Biol Cell 96:257–260

    CAS  Google Scholar 

  108. Gill R, Lodge D (1997) Pharmacology of AMPA antagonists and their role in neuroprotection. Int Rev Neurobiol 40:197–232

    Article  CAS  Google Scholar 

  109. Narayanan U, Chi OZ, Liu X et al (2000) Effect of AMPA on cerebral cortical oxygen balance of ischemic rat brain. Neurochem Res 25:405–411

    Article  CAS  Google Scholar 

  110. Gill R (1994) The pharmacology of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate antagonists and their role in cerebral ischaemia. Cerebrovasc Brain Metab Rev 6:225–256

    CAS  Google Scholar 

  111. Xue D, Huang ZG, Barnes K et al (1994) Delayed treatment with AMPA, but not NMDA, antagonists reduces neocortical infarction. J Cereb Blood Flow Metab 14:251–261

    Article  CAS  Google Scholar 

  112. Rogawski MA, Donevan SD (1999) AMPA receptors in epilepsy and as targets for antiepileptic drugs. Adv Neurol 79:947–963

    CAS  Google Scholar 

  113. Tortorella A, Halonen T, Sahibzada N et al (1997) A crucial role of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptors in piriform and perirhinal cortex for the initiation and propagation of limbic motor seizures. J Pharmacol Exp Ther 280:1401–1405

    CAS  Google Scholar 

  114. Kunig G, Niedermeyer B, Deckert J et al (1998) Inhibition of [3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid [AMPA] binding by the anticonvulsant valproate in clinically relevant concentrations: an autoradiographic investigation in human hippocampus. Epilepsy Res 31:153–157

    Article  CAS  Google Scholar 

  115. Lees GJ, Leong W (1993) Differential effects of NBQX on the distal and local toxicity of glutamate agonists administered intra-hippocampally. Brain Res 628:1–7

    Article  CAS  Google Scholar 

  116. Lees GJ, Leong W (1994) Synergy between diazepam and NBQX in preventing neuronal death caused by non-NMDA agonists. Neuroreport 5:2149–2152

    Article  CAS  Google Scholar 

  117. Carroll RC, Lissin DV, von Zastrow M et al (1999) Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat Neurosci 2:454–460

    Article  CAS  Google Scholar 

  118. Hayashi Y, Shi SH, Esteban JA et al (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–2267

    Article  CAS  Google Scholar 

  119. Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40:361–379

    Article  CAS  Google Scholar 

  120. Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25:578–588

    Article  CAS  Google Scholar 

  121. Kim JH, Anwyl R, Suh YH et al (2001) Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J Neurosci 21:1327–1333

    CAS  Google Scholar 

  122. Armstrong DM, Ikonomovic MD, Sheffield R et al (1994) AMPA-selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer’s disease. Brain Res 639:207–216

    Article  CAS  Google Scholar 

  123. Aronica E, Dickson DW, Kress Y et al (1998) Non-plaque dystrophic dendrites in Alzheimer hippocampus: a new pathological structure revealed by glutamate receptor immunocytochemistry. Neuroscience 82:979–991

    Article  CAS  Google Scholar 

  124. Thorns V, Mallory M, Hansen L et al (1997) Alterations in glutamate receptor 2/3 subunits and amyloid precursor protein expression during the course of Alzheimer’s disease and Lewy body variant. Acta Neuropathol 94:539–548

    Article  CAS  Google Scholar 

  125. Chan SL, Griffin WS, Mattson MP (1999) Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer’s disease. J Neurosci Res 57:315–323

    Article  CAS  Google Scholar 

  126. Szegedi V, Juhasz G, Budai D et al (2005) Divergent effects of Abeta1-42 on ionotropic glutamate receptor-mediated responses in CA1 neurons in vivo. Brain Res 1062:120–126

    Article  CAS  Google Scholar 

  127. Tozaki H, Matsumoto A, Kanno T et al (2002) The inhibitory and facilitatory actions of amyloid-beta peptides on nicotinic ACh receptors and AMPA receptors. Biochem Biophys Res Commun 294:42–45

    Article  CAS  Google Scholar 

  128. Zhao D, Watson JB, Xie CW (2004) Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol 92:2853–2858

    Article  CAS  Google Scholar 

  129. Almeida CG, Tampellini D, Takahashi RH et al (2005) Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 20:187–198

    Article  CAS  Google Scholar 

  130. Louzada PR Jr, Paula Lima AC, de Mello FG et al (2001) Dual role of glutamatergic neurotransmission on amyloid beta(1-42) aggregation and neurotoxicity in embryonic avian retina. Neurosci Lett 301:59–63

    Article  CAS  Google Scholar 

  131. Allen JW, Eldadah BA, Faden AI (1999) Beta-amyloid-induced apoptosis of cerebellar granule cells and cortical neurons: exacerbation by selective inhibition of group I metabotropic glutamate receptors. Neuropharmacology 38:1243–1252

    Article  CAS  Google Scholar 

  132. Ting JT, Kelley BG, Lambert TJ et al (2007) Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms. Proc Natl Acad Sci USA 104:353–358

    Article  CAS  Google Scholar 

  133. Ahmadian G, Ju W, Liu L et al (2004) Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J 23:1040–1050

    Article  CAS  Google Scholar 

  134. Hayashi T, Huganir RL (2004) Tyrosine phosphorylation and regulation of the AMPA receptor by SRC family tyrosine kinases. J Neurosci 24:6152–6160

    Article  CAS  Google Scholar 

  135. Papa SM, Engber TM, Boldry RC et al (1993) Opposite effects of NMDA and AMPA receptor blockade on catalepsy induced by dopamine receptor antagonists. Eur J Pharmacol 232:247–253

    Article  CAS  Google Scholar 

  136. Zadow B, Schmidt WJ (1994) The AMPA antagonists NBQX and GYKI 52466 do not counteract neuroleptic-induced catalepsy. Naunyn Schmiedebergs Arch Pharmacol 349:61–65

    Article  CAS  Google Scholar 

  137. Loschmann PA, Lange KW, Kunow M et al (1991) Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-dopa in models of Parkinson’s disease. J Neural Transm Park Dis Dement Sect 3:203–213

    Article  CAS  Google Scholar 

  138. Loschmann PA, Kunow M, Wachtel H (1992) Synergism of NBQX with dopamine agonists in the 6-OHDA rat model of Parkinson’s disease. J Neural Transm Suppl 38:55–64

    CAS  Google Scholar 

  139. Wachtel H, Kunow M, Loschmann PA (1992) NBQX (6-nitro-sulfamoyl-benzo-quinoxaline-dione) and CPP (3-carboxy-piperazin-propyl phosphonic acid) potentiate dopamine agonist induced rotations in substantia nigra lesioned rats. Neurosci Lett 142:179–182

    Article  CAS  Google Scholar 

  140. Konitsiotis S, Blanchet PJ, Verhagen L et al (2000) AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 54:1589–1595

    Article  CAS  Google Scholar 

  141. Marin C, Jimenez A, Bonastre M et al (2001) LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopa-induced motor alterations in Parkinsonian rats. Synapse 42:40–47

    Article  CAS  Google Scholar 

  142. Silverdale MA, Nicholson SL, Crossman AR et al (2005) Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov Disord 20:403–409

    Article  Google Scholar 

  143. Black MD (2005) Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology 179:154–163

    Article  CAS  Google Scholar 

  144. Ward SE, Bax BD, Harries M (2010) Challenges for and current status of research into positive modulators of AMPA receptors. Br J Pharmacol 160:181–190

    Article  CAS  Google Scholar 

  145. Marenco S, Weinberger DR (2006) Therapeutic potential of positive AMPA receptor modulators in the treatment of neuropsychiatric disorders. CNS Drugs 20:173–185

    Article  CAS  Google Scholar 

  146. Fletcher EJ, Lodge D (1996) New developments in the molecular pharmacology of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and kainate receptors. Pharmacol Ther 70:65–89

    Article  CAS  Google Scholar 

  147. Yamada KA (2000) Therapeutic potential of positive AMPA receptor modulators in the treatment of neurological disease. Expert Opin Invest Drugs 9:765–778

    Article  CAS  Google Scholar 

  148. Mayer ML, Vyklicky L Jr (1989) Concanavalin A selectively reduces desensitization of mammalian neuronal quisqualate receptors. Proc Natl Acad Sci USA 86:1411–1415

    Article  CAS  Google Scholar 

  149. Ito I, Tanabe S, Kohda A et al (1990) Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. J Physiol 424:533–543

    CAS  Google Scholar 

  150. Ahmed AH, Oswald RE (2010) Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. J Med Chem 53:2197–2203

    Article  CAS  Google Scholar 

  151. Yamada KA, Tang CM (1993) Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. J Neurosci 13:3904–3915

    CAS  Google Scholar 

  152. Staubli U, Rogers G, Lynch G (1994) Facilitation of glutamate receptors enhances memory. Proc Natl Acad Sci USA 91:777–781

    Article  CAS  Google Scholar 

  153. Arai A, Kessler M, Rogers G et al (1996) Effects of a memory-enhancing drug on DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents and synaptic transmission in hippocampus. J Pharmacol Exp Ther 278:627–638

    CAS  Google Scholar 

  154. Goff DC, Lamberti JS, Leon AC et al (2008) A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology 33:465–472

    Article  CAS  Google Scholar 

  155. Yamada KA, Rothman SM (1992) Diazoxide blocks glutamate desensitization and prolongs excitatory postsynaptic currents in rat hippocampal neurons. J Physiol 458:409–423

    CAS  Google Scholar 

  156. Francotte P, Tullio P, Goffin E et al (2007) Design, synthesis, and pharmacology of novel 7-substituted 3, 4-dihydro-2H–1, 2, 4-benzothiadiazine 1, 1-dioxides as positive allosteric modulators of AMPA receptors. J Med Chem 50:3153–3157

    Article  CAS  Google Scholar 

  157. Phillips D, Sonnenberg J, Arai AC et al (2002) 5′-alkyl-benzothiadiazides: a new subgroup of AMPA receptor modulators with improved affinity. Bioorg Med Chem 10:1229–1248

    Article  CAS  Google Scholar 

  158. Francotte P, Goffin E, Fraikin P et al (2010) New fluorinated 1, 2, 4-benzothiadiazine 1, 1-dioxides: discovery of an orally active cognitive enhancer acting through potentiation of the 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid receptors. J Med Chem 53:1700–1711

    Article  CAS  Google Scholar 

  159. Francotte P, de Tullio P, Podona T et al (2008) Synthesis and pharmacological evaluation of a second generation of pyridothiadiazine 1, 1-dioxides acting as AMPA potentiators. Bioorg Med Chem 16:9948–9956

    Article  CAS  Google Scholar 

  160. Marighetto A, Valerio S, Jaffard R et al (2008) The AMPA modulator S 18986 improves declarative and working memory performances in aged mice. Behav Pharmacol 19:235–244

    Article  CAS  Google Scholar 

  161. Ptak CP, Ahmed AH, Oswald RE (2009) Probing the allosteric modulator binding site of GluR2 with thiazide derivatives. Biochemistry 48:8594–8602

    Article  CAS  Google Scholar 

  162. Hald H, Ahring PK, Timmermann DB et al (2009) Distinct structural features of cyclothiazide are responsible for effects on peak current amplitude and desensitization kinetics at iGluR2. J Mol Biol 391:906–917

    Article  CAS  Google Scholar 

  163. Sekiguchi M, Fleck MW, Mayer ML et al (1997) A novel allosteric potentiator of AMPA receptors: 4–2-(phenylsulfonylamino)ethylthio–2, 6-difluoro-phenoxyaceta mide. J Neurosci 17:5760–5771

    CAS  Google Scholar 

  164. Ornstein PL, Zimmerman DM, Arnold MB et al (2000) Biarylpropylsulfonamides as novel, potent potentiators of 2-amino-3- (5-methyl-3-hydroxyisoxazol-4-yl)- propanoic acid (AMPA) receptors. J Med Chem 43:4354–4358

    Article  CAS  Google Scholar 

  165. Harpsoe K, Liljefors T, Balle T (2008) Prediction of the binding mode of biarylpropylsulfonamide allosteric AMPA receptor modulators based on docking, GRID molecular interaction fields and 3D-QSAR analysis. J Mol Graph Model 26:874–883

    Article  CAS  Google Scholar 

  166. Chappell AS, Gonzales C, Williams J et al (2007) AMPA potentiator treatment of cognitive deficits in Alzheimer disease. Neurology 68:1008–1012

    Article  CAS  Google Scholar 

  167. Fernandez MC, Castano A, Dominguez E et al (2006) A novel class of AMPA receptor allosteric modulators. Part 1: design, synthesis, and SAR of 3-aryl-4-cyano-5-substituted-heteroaryl-2-carboxylic acid derivatives. Bioorg Med Chem Lett 16:5057–5061

    Article  CAS  Google Scholar 

  168. Zarrinmayeh H, Tromiczak E, Zimmerman DM et al (2006) A novel class of positive allosteric modulators of AMPA receptors: design, synthesis, and structure-activity relationships of 3-biphenyl-4-yl-4-cyano-5-ethyl-1-methyl-1H-pyrrole-2-carboxylic acid, LY2059346. Bioorg Med Chem Lett 16:5203–5206

    Article  CAS  Google Scholar 

  169. Nikam SS, Kornberg BE (2001) AMPA receptor antagonists. Curr Med Chem 8:155–170

    Article  CAS  Google Scholar 

  170. Pentikainen U, Settimo L, Johnson MS et al (2006) Subtype selectivity and flexibility of ionotropic glutamate receptors upon antagonist ligand binding. Org Biomol Chem 4:1058–1070

    Article  CAS  Google Scholar 

  171. Varano F, Catarzi D, Colotta V et al (2008) Novel AMPA and kainate receptor antagonists containing the pyrazolo[1, 5-c]quinazoline ring system: Synthesis and structure-activity relationships. Bioorg Med Chem 16:2617–2626

    Article  CAS  Google Scholar 

  172. Menniti FS, Chenard BL, Collins MB et al (2000) Characterization of the binding site for a novel class of noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonists. Mol Pharmacol 58:1310–1317

    CAS  Google Scholar 

  173. Micale N, Colleoni S, Postorino G et al (2008) Structure-activity study of 2, 3-benzodiazepin-4-ones noncompetitive AMPAR antagonists: identification of the 1-(4-amino-3-methylphenyl)-3, 5-dihydro-7, 8-ethylenedioxy-4H–2, 3-benzodiaze pin-4-one as neuroprotective agent. Bioorg Med Chem 16:2200–2211

    Article  CAS  Google Scholar 

  174. Ruel J, Guitton MJ, Puell JL (2002) Negative allosteric modulation of AMPA-preferring receptors by the selective isomer GYKI 53784 (LY303070), a specific non-competitive AMPA antagonist. CNS Drug Rev 8:235–254

    Article  CAS  Google Scholar 

  175. Bialer M, Johannessen SI, Kupferberg HJ et al (2004) Progress report on new antiepileptic drugs: a summary of the Seventh Eilat Conference (EILAT VII). Epilepsy Res 61:1–48

    Article  Google Scholar 

  176. Pelletier JC, Hesson DP, Jones KA et al (1996) Substituted 1, 2-dihydrophthalazines: potent, selective, and noncompetitive inhibitors of the AMPA receptor. J Med Chem 39:343–346

    Article  CAS  Google Scholar 

  177. Pei XF, Sturgess MA, Valenzuela CF et al (1999) Allosteric modulators of the AMPA receptor: novel 6-substituted dihydrophthalazines. Bioorg Med Chem Lett 9:539–542

    Article  CAS  Google Scholar 

  178. Gitto R, Caruso R, Pagano B et al (2006) Novel potent anticonvulsant agent containing a tetrahydroisoquinoline skeleton. J Med Chem 49:5618–5622

    Article  CAS  Google Scholar 

  179. Gitto R, De Luca L, Pagano B et al (2008) Synthesis and anticonvulsant evaluation of N-substituted isoquinoline AMPA receptor antagonists. Bioorg Med Chem 16:2379–2384

    Article  CAS  Google Scholar 

  180. Macchiarulo A, De Luca L, Costantino G et al (2004) QSAR study of anticonvulsant negative allosteric modulators of the AMPA receptor. J Med Chem 47:1860–1863

    Article  CAS  Google Scholar 

  181. Ahmed AH, Wang Q, Sondermann H et al (2009) Structure of the S1S2 glutamate binding domain of GLuR3. Proteins 75:628–637

    Article  CAS  Google Scholar 

  182. Karim F, Wang CC, RWt G (2001) Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci 21:3771–3779

    CAS  Google Scholar 

  183. Warwick HK, Nahorski SR, Challiss RA (2005) Group I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to cyclic AMP response element binding protein (CREB) through a common Ca2+ – and protein kinase C-dependent pathway. J Neurochem 93:232–245

    Article  CAS  Google Scholar 

  184. Biber K, Laurie DJ, Berthele A et al (1999) Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 72:1671–1680

    Article  CAS  Google Scholar 

  185. Harrison PJ, Lyon L, Sartorius LJ et al (2008) The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. J Psychopharmacol 22:308–322

    Article  CAS  Google Scholar 

  186. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  Google Scholar 

  187. Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  CAS  Google Scholar 

  188. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  Google Scholar 

  189. Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20:485–494

    CAS  Google Scholar 

  190. Albasanz JL, Dalfo E, Ferrer I et al (2005) Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol Dis 20:685–693

    Article  CAS  Google Scholar 

  191. Bahr BA, Abai B, Gall CM et al (1994) Induction of beta-amyloid-containing polypeptides in hippocampus: evidence for a concomitant loss of synaptic proteins and interactions with an excitotoxin. Exp Neurol 129:81–94

    Article  CAS  Google Scholar 

  192. Celsi F, Svedberg M, Unger C et al (2007) Beta-amyloid causes downregulation of calcineurin in neurons through induction of oxidative stress. Neurobiol Dis 26:342–352

    Article  CAS  Google Scholar 

  193. Bahr BA, Hoffman KB, Yang AJ et al (1998) Amyloid beta protein is internalized selectively by hippocampal field CA1 and causes neurons to accumulate amyloidogenic carboxyterminal fragments of the amyloid precursor protein. J Comp Neurol 397:139–147

    Article  CAS  Google Scholar 

  194. Bendiske J, Bahr BA (2003) Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis–an approach for slowing Alzheimer disease? J Neuropathol Exp Neurol 62:451–463

    CAS  Google Scholar 

  195. Ure J, Baudry M, Perassolo M (2006) Metabotropic glutamate receptors and epilepsy. J Neurol Sci 247:1–9

    Article  CAS  Google Scholar 

  196. Zhong J, Gerber G, Kojic L et al (2000) Dual modulation of excitatory synaptic transmission by agonists at group I metabotropic glutamate receptors in the rat spinal dorsal horn. Brain Res 887:359–377

    Article  CAS  Google Scholar 

  197. Allen JW, Vicini S, Faden AI (2001) Exacerbation of neuronal cell death by activation of group I metabotropic glutamate receptors: role of NMDA receptors and arachidonic acid release. Exp Neurol 169:449–460

    Article  CAS  Google Scholar 

  198. Bruno V, Copani A, Knopfel T et al (1995) Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA-induced neuronal degeneration in cultured cortical cells. Neuropharmacology 34:1089–1098

    Article  CAS  Google Scholar 

  199. Faden AI, O’Leary DM, Fan L et al (2001) Selective blockade of the mGluR1 receptor reduces traumatic neuronal injury in vitro and improvesoOutcome after brain trauma. Exp Neurol 167:435–444

    Article  CAS  Google Scholar 

  200. Mukhin AG, Ivanova SA, Faden AI (1997) mGluR modulation of post-traumatic neuronal death: role of NMDA receptors. Neuroreport 8:2561–2566

    Article  CAS  Google Scholar 

  201. Kohara A, Takahashi M, Yatsugi S et al (2008) Neuroprotective effects of the selective type 1 metabotropic glutamate receptor antagonist YM-202074 in rat stroke models. Brain Res 1191:168–179

    Article  CAS  Google Scholar 

  202. Lyeth BG, Gong QZ, Shields S et al (2001) Group I metabotropic glutamate antagonist reduces acute neuronal degeneration and behavioral deficits after traumatic brain injury in rats. Exp Neurol 169:191–199

    Article  CAS  Google Scholar 

  203. Mills CD, Johnson KM, Hulsebosch CE (2002) Group I metabotropic glutamate receptors in spinal cord injury: roles in neuroprotection and the development of chronic central pain. J Neurotrauma 19:23–42

    Article  Google Scholar 

  204. Movsesyan VA, Stoica BA, Faden AI (2004) MGLuR5 activation reduces beta-amyloid-induced cell death in primary neuronal cultures and attenuates translocation of cytochrome c and apoptosis-inducing factor. J Neurochem 89:1528–1536

    Article  CAS  Google Scholar 

  205. Vincent AM, TenBroeke M, Maiese K (1999) Metabotropic glutamate receptors prevent programmed cell death through the modulation of neuronal endonuclease activity and intracellular pH. Exp Neurol 155:79–94

    Article  CAS  Google Scholar 

  206. Byrnes KR, Stoica B, Loane DJ et al (2009) Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 57:550–560

    Article  Google Scholar 

  207. Lea PM, Custer SJ, Vicini S et al (2002) Neuronal and glial mGluR5 modulation prevents stretch-induced enhancement of NMDA receptor current. Pharmacol Biochem Behav 73:287–298

    Article  CAS  Google Scholar 

  208. Deng W, Wang H, Rosenberg PA et al (2004) Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc Natl Acad Sci USA 101:7751–7756

    Article  CAS  Google Scholar 

  209. Awad H, Hubert GW, Smith Y et al (2000) Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 20:7871–7879

    CAS  Google Scholar 

  210. Conn PJ, Battaglia G, Marino MJ et al (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798

    Article  CAS  Google Scholar 

  211. Pisani A, Calabresi P, Centonze D et al (1997) Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br J Pharmacol 120:1007–1014

    Article  CAS  Google Scholar 

  212. Breysse N, Baunez C, Spooren W et al (2002) Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 22:5669–5678

    CAS  Google Scholar 

  213. Breysse N, Amalric M, Salin P (2003) Metabotropic glutamate 5 receptor blockade alleviates akinesia by normalizing activity of selective basal-ganglia structures in parkinsonian rats. J Neurosci 23:8302–8309

    CAS  Google Scholar 

  214. Ossowska K, Konieczny J, Wolfarth S et al (2001) Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology 41:413–420

    Article  CAS  Google Scholar 

  215. Coccurello R, Breysse N, Amalric M (2004) Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 29:1451–1461

    Article  CAS  Google Scholar 

  216. Kachroo A, Orlando LR, Grandy DK et al (2005) Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 25:10414–10419

    Article  CAS  Google Scholar 

  217. Diaz-Cabiale Z, Vivo M, Del Arco A et al (2002) Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci Lett 324:154–158

    Article  CAS  Google Scholar 

  218. Ferre S, Karcz-Kubicha M, Hope BT et al (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci USA 99:11940–11945

    Article  CAS  Google Scholar 

  219. Fuxe K, Agnati LF, Jacobsen K et al (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61:S19–S23

    Article  CAS  Google Scholar 

  220. Nishi A, Liu F, Matsuyama S et al (2003) Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc Natl Acad Sci USA 100:1322–1327

    Article  Google Scholar 

  221. Turle-Lorenzo N, Breysse N, Baunez C et al (2005) Functional interaction between mGlu 5 and NMDA receptors in a rat model of Parkinson’s disease. Psychopharmacology 179:117–127

    Article  CAS  Google Scholar 

  222. Kearney JA, Frey KA, Albin RL (1997) Metabotropic glutamate agonist-induced rotation: a pharmacological, FOS immunohistochemical, and [14C]-2-deoxyglucose autoradiographic study. J Neurosci 17:4415–4425

    CAS  Google Scholar 

  223. Kearney JA, Becker JB, Frey KA et al (1998) The role of nigrostriatal dopamine in metabotropic glutamate agonist-induced rotation. Neuroscience 87:881–891

    Article  CAS  Google Scholar 

  224. Wardas J, Pietraszek M, Wolfarth S et al (2003) The role of metabotropic glutamate receptors in regulation of striatal proenkephalin expression: implications for the therapy of Parkinson’s disease. Neuroscience 122:747–756

    Article  CAS  Google Scholar 

  225. Phillips JM, Lam HA, Ackerson LC et al (2006) Blockade of mGluR glutamate receptors in the subthalamic nucleus ameliorates motor asymmetry in an animal model of Parkinson’s disease. Eur J Neurosci 23:151–160

    Article  Google Scholar 

  226. De Leonibus E, Manago F, Giordani F et al (2009) Metabotropic glutamate receptors 5 blockade reverses spatial memory deficits in a mouse model of Parkinson’s disease. Neuropsychopharmacology 34:729–738

    Article  CAS  Google Scholar 

  227. Palucha A, Pilc A (2007) Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol Ther 115:116–147

    Article  CAS  Google Scholar 

  228. Witkin JM, Marek GJ, Johnson BG et al (2007) Metabotropic glutamate receptors in the control of mood disorders. CNS Neurol Disord Drug Targets 6:87–100

    Article  CAS  Google Scholar 

  229. Samadi P, Gregoire L, Morissette M et al (2008) mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 29:1040–1051

    Article  CAS  Google Scholar 

  230. Levandis G, Bazzini E, Armentero MT et al (2008) Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis 29:161–168

    Article  CAS  Google Scholar 

  231. Mela F, Marti M, Dekundy A et al (2007) Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem 101:483–497

    Article  CAS  Google Scholar 

  232. Schiefer J, Sprunken A, Puls C et al (2004) The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington’s disease. Brain Res 1019:246–254

    Article  CAS  Google Scholar 

  233. Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 9:423–436

    Article  CAS  Google Scholar 

  234. Bradley SR, Marino MJ, Wittmann M et al (2000) Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia Nigra pars reticulata. J Neurosci 20:3085–3094

    CAS  Google Scholar 

  235. Rouse ST, Marino MJ, Bradley SR et al (2000) Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 88:427–435

    Article  CAS  Google Scholar 

  236. Dawson L, Chadha A, Megalou M et al (2000) The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intraventricular administration in the reserpine-treated rat. Br J Pharmacol 129:541–546

    Article  CAS  Google Scholar 

  237. Murray TK, Messenger MJ, Ward MA et al (2002) Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson’s disease. Pharmacol Biochem Behav 73:455–466

    Article  CAS  Google Scholar 

  238. Picconi B, Pisani A, Centonze D et al (2002) Striatal metabotropic glutamate receptor function following experimental parkinsonism and chronic levodopa treatment. Brain 125:2635–2645

    Article  Google Scholar 

  239. Matsui T, Kita H (2003) Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus. Neuroscience 122:727–737

    Article  CAS  Google Scholar 

  240. Valenti O, Marino MJ, Wittmann M et al (2003) Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J Neurosci 23:7218–7226

    CAS  Google Scholar 

  241. Wittmann M, Marino MJ, Bradley SR et al (2001) Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata. J Neurophysiol 85:1960–1968

    CAS  Google Scholar 

  242. MacInnes N, Messenger MJ, Duty S (2004) Activation of group III metabotropic glutamate receptors in selected regions of the basal ganglia alleviates akinesia in the reserpine-treated rat. Br J Pharmacol 141:15–22

    Article  CAS  Google Scholar 

  243. Schoepp DD, Jane DE, Monn JA (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38:1431–1476

    Article  CAS  Google Scholar 

  244. Pin JP, De Colle C, Bessis AS et al (1999) New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol 375:277–294

    Article  CAS  Google Scholar 

  245. Layton ME (2005) Subtype-selective noncompetitive modulators of metabotropic glutamate receptor subtype 1 (mGluR1). Curr Top Med Chem 5:859–867

    Article  CAS  Google Scholar 

  246. Litschig S, Gasparini F, Rueegg D et al (1999) CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol Pharmacol 55:453–461

    CAS  Google Scholar 

  247. Ott D, Floersheim P, Inderbitzin W et al (2000) Chiral resolution, pharmacological characterization, and receptor docking of the noncompetitive mGlu1 receptor antagonist (+/-)-2-hydroxyimino- 1a, 2-dihydro-1H-7-oxacyclopropa[b]naphthalene-7a-carboxylic acid ethyl ester. J Med Chem 43:4428–4436

    Article  CAS  Google Scholar 

  248. Carroll FY, Stolle A, Beart PM et al (2001) BAY36-7620: a potent non-competitive mGlu1 receptor antagonist with inverse agonist activity. Mol Pharmacol 59:965–973

    CAS  Google Scholar 

  249. De Vry J, Horvath E, Schreiber R (2001) Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu(1) receptor antagonist BAY 36-7620. Eur J Pharmacol 428:203–214

    Article  Google Scholar 

  250. Lavreysen H, Pereira SN, Leysen JE et al (2004) Metabotropic glutamate 1 receptor distribution and occupancy in the rat brain: a quantitative autoradiographic study using [3H]R214127. Neuropharmacology 46:609–619

    Article  CAS  Google Scholar 

  251. Malherbe P, Kratochwil N, Knoflach F et al (2003) Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, noncompetitive antagonist of the metabotropic glutamate 1 receptor. J Biol Chem 278:8340–8347

    Article  CAS  Google Scholar 

  252. Micheli F, Fabio RD, Cavanni P et al (2003) Synthesis and pharmacological characterisation of 2, 4-dicarboxy-pyrroles as selective non-competitive mGluR1 antagonists. Bioorg Med Chem 11:171–183

    Article  CAS  Google Scholar 

  253. Mabire D, Coupa S, Adelinet C et al (2005) Synthesis, structure-activity relationship, and receptor pharmacology of a new series of quinoline derivatives acting as selective, noncompetitive mGlu1 antagonists. J Med Chem 48:2134–2153

    Article  CAS  Google Scholar 

  254. Sekhar YN, Nayana MR, Ravikumar M et al (2007) Comparative molecular field analysis of quinoline derivatives as selective and noncompetitive mGluR1 antagonists. Chem Biol Drug Des 70:511–519

    Article  CAS  Google Scholar 

  255. Noeske T, Jirgensons A, Starchenkovs I et al (2007) Virtual screening for selective allosteric mGluR1 antagonists and structure-activity relationship investigations for coumarine derivatives. ChemMedChem 2:1763–1773

    Article  CAS  Google Scholar 

  256. Vanejevs M, Jatzke C, Renner S et al (2008) Positive and negative modulation of group I metabotropic glutamate receptors. J Med Chem 51:634–647

    Article  CAS  Google Scholar 

  257. Wang X, Kolasa T, El Kouhen OF et al (2007) Rapid hit to lead evaluation of pyrazolo[3, 4-d]pyrimidin-4-one as selective and orally bioavailable mGluR1 antagonists. Bioorg Med Chem Lett 17:4303–4307

    Article  CAS  Google Scholar 

  258. Wu WL, Burnett DA, Domalski M et al (2007) Discovery of orally efficacious tetracyclic metabotropic glutamate receptor 1 (mGluR1) antagonists for the treatment of chronic pain. J Med Chem 50:5550–5553

    Article  CAS  Google Scholar 

  259. Sekhar YN, Nayana MR, Sivakumari N et al (2008) 3D-QSAR and molecular docking studies of 1, 3, 5-triazene-2, 4-diamine derivatives against r-RNA: novel bacterial translation inhibitors. J Mol Graph Model 26:1338–1352

    Article  CAS  Google Scholar 

  260. Ito S, Satoh A, Nagatomi Y et al (2008) Discovery and biological profile of 4-(1-aryltriazol-4-yl)-tetrahydropyridines as an orally active new class of metabotropic glutamate receptor 1 antagonist. Bioorg Med Chem 16:9817–9829

    Article  CAS  Google Scholar 

  261. Ito S, Hirata Y, Nagatomi Y et al (2009) Discovery and biological profile of isoindolinone derivatives as novel metabotropic glutamate receptor 1 antagonists: a potential treatment for psychotic disorders. Bioorg Med Chem Lett 19:5310–5313

    Article  CAS  Google Scholar 

  262. Satoh A, Nagatomi Y, Hirata Y et al (2009) Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1, 3-thiazol-2-yl]-N-methy lbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorg Med Chem Lett 19:5464–5468

    Article  CAS  Google Scholar 

  263. Helton DR, Tizzano JP, Monn JA et al (1998) Anxiolytic and side-effect profile of LY354740: a potent, highly selective, orally active agonist for group II metabotropic glutamate receptors. J Pharmacol Exp Ther 284:651–660

    CAS  Google Scholar 

  264. Tizzano JP, Griffey KI, Schoepp DD (2002) The anxiolytic action of mGlu2/3 receptor agonist, LY354740, in the fear-potentiated startle model in rats is mechanistically distinct from diazepam. Pharmacol Biochem Behav 73:367–374

    Article  CAS  Google Scholar 

  265. Monn JA, Valli MJ, Massey SM et al (1999) Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane-2, 6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J Med Chem 42:1027–1040

    Article  CAS  Google Scholar 

  266. Jones CK, Eberle EL, Peters SC et al (2005) Analgesic effects of the selective group II (mGlu2/3) metabotropic glutamate receptor agonists LY379268 and LY389795 in persistent and inflammatory pain models after acute and repeated dosing. Neuropharmacology 49(Suppl 1):206–218

    Article  CAS  Google Scholar 

  267. Monn JA, Massey SM, Valli MJ et al (2007) Synthesis and metabotropic glutamate receptor activity of S-oxidized variants of (−)-4-amino-2-thiabicyclo-[3.1.0]hexane-4, 6-dicarboxylate: identification of potent, selective, and orally bioavailable agonists for mGlu2/3 receptors. J Med Chem 50:233–240

    Article  CAS  Google Scholar 

  268. Rorick-Kehn LM, Johnson BG, Burkey JL et al (2007) Pharmacological and pharmacokinetic properties of a structurally novel, potent, and selective metabotropic glutamate 2/3 receptor agonist: in vitro characterization of agonist (-)-(1R, 4S, 5S, 6S)-4-amino-2-sulfonylbicyclo[3.1.0]-hexane-4, 6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 321:308–317

    Article  CAS  Google Scholar 

  269. Krystal JH, Abi-Saab W, Perry E et al (2005) Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology 179:303–309

    Article  CAS  Google Scholar 

  270. Perkins EJ, Abraham T (2007) Pharmacokinetics, metabolism, and excretion of the intestinal peptide transporter 1 (SLC15A1)-targeted prodrug (1S, 2S, 5R, 6S)-2-[(2′S)-(2-amino)propionyl]aminobicyclo[3.1.0.]hexen-2, 6-di carboxylic acid (LY544344) in rats and dogs: assessment of first-pass bioactivation and dose linearity. Drug Metab Dispos 35:1903–1909

    Article  CAS  Google Scholar 

  271. Patil ST, Zhang L, Martenyi F et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107

    Article  CAS  Google Scholar 

  272. Nakazato A, Kumagai T, Sakagami K et al (2000) Synthesis, SARs, and pharmacological characterization of 2-amino-3 or 6-fluorobicyclo[3.1.0]hexane-2, 6-dicarboxylic acid derivatives as potent, selective, and orally active group II metabotropic glutamate receptor agonists. J Med Chem 43:4893–4909

    Article  CAS  Google Scholar 

  273. Dominguez C, Prieto L, Valli MJ et al (2005) Methyl substitution of 2-aminobicyclo[3.1.0]hexane 2, 6-dicarboxylate (LY354740) determines functional activity at metabotropic glutamate receptors: identification of a subtype selective mGlu2 receptor agonist. J Med Chem 48:3605–3612

    Article  CAS  Google Scholar 

  274. Rudd MT, McCauley JA (2005) Positive allosteric modulators of the metabotropic glutamate receptor subtype 2 (mGluR2). Curr Top Med Chem 5:869–884

    Article  CAS  Google Scholar 

  275. Fraley ME (2009) Positive allosteric modulators of the metabotropic glutamate receptor 2 for the treatment of schizophrenia. Expert Opin Ther Pat 19:1259–1275

    Article  CAS  Google Scholar 

  276. Johnson MP, Baez M, Jagdmann GE Jr et al (2003) Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2, 2, 2- trifluoroethylsulfonyl)pyrid-3-ylmethylamine. J Med Chem 46:3189–3192

    Article  CAS  Google Scholar 

  277. Pinkerton AB, Cube RV, Hutchinson JH et al (2004) Allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2). Part 1: Identification and synthesis of phenyl-tetrazolyl acetophenones. Bioorg Med Chem Lett 14:5329–5332

    Article  CAS  Google Scholar 

  278. Pinkerton AB, Vernier JM, Schaffhauser H et al (2004) Phenyl-tetrazolyl acetophenones: discovery of positive allosteric potentiatiors for the metabotropic glutamate 2 receptor. J Med Chem 47:4595–4599

    Article  CAS  Google Scholar 

  279. Galici R, Jones CK, Hemstapat K et al (2006) Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice. J Pharmacol Exp Ther 318:173–185

    Article  CAS  Google Scholar 

  280. Pinkerton AB, Cube RV, Hutchinson JH et al (2004) Allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2). Part 2: 4-thiopyridyl acetophenones as non-tetrazole containing mGlu2 receptor potentiators. Bioorg Med Chem Lett 14:5867–5872

    Article  CAS  Google Scholar 

  281. Bonnefous C, Vernier JM, Hutchinson JH et al (2005) Biphenyl-indanones: allosteric potentiators of the metabotropic glutamate subtype 2 receptor. Bioorg Med Chem Lett 15:4354–4358

    Article  CAS  Google Scholar 

  282. Cube RV, Vernier JM, Hutchinson JH et al (2005) 3-(2-Ethoxy-4-{4-[3-hydroxy-2-methyl-4-(3-methylbutanoyl)phenoxy]butoxy}ph enyl)propanoic acid: a brain penetrant allosteric potentiator at the metabotropic glutamate receptor 2 (mGluR2). Bioorg Med Chem Lett 15:2389–2393

    Article  CAS  Google Scholar 

  283. Govek SP, Bonnefous C, Hutchinson JH et al (2005) Benzazoles as allosteric potentiators of metabotropic glutamate receptor 2 (mGluR2): efficacy in an animal model for schizophrenia. Bioorg Med Chem Lett 15:4068–4072

    Article  CAS  Google Scholar 

  284. Pinkerton AB, Cube RV, Hutchinson JH et al (2005) Allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2). Part 3: Identification and biological activity of indanone containing mGlu2 receptor potentiators. Bioorg Med Chem Lett 15:1565–1571

    Article  CAS  Google Scholar 

  285. Zhang L, Rogers BN, Duplantier AJ et al (2008) 3-(Imidazolyl methyl)-3-aza-bicyclo[3.1.0]hexan-6-yl)methyl ethers: a novel series of mGluR2 positive allosteric modulators. Bioorg Med Chem Lett 18:5493–5496

    Article  CAS  Google Scholar 

  286. D’Alessandro PL, Corti C, Roth A et al (2010) The identification of structurally novel, selective, orally bioavailable positive modulators of mGluR2. Bioorg Med Chem Lett 20:759–762

    Article  CAS  Google Scholar 

  287. Duplantier AJ, Efremov I, Candler J et al (2009) 3-Benzyl-1, 3-oxazolidin-2-ones as mGluR2 positive allosteric modulators: Hit-to lead and lead optimization. Bioorg Med Chem Lett 19:2524–2529

    Article  CAS  Google Scholar 

  288. Lindsley CW, Niswender CM, Engers DW et al (2009) Recent progress in the development of mGluR4 positive allosteric modulators for the treatment of Parkinson’s disease. Curr Top Med Chem 9:949–963

    Article  CAS  Google Scholar 

  289. Marino MJ, Williams DL Jr, O’Brien JA et al (2003) Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci USA 100:13668–13673

    Article  CAS  Google Scholar 

  290. Maj M, Bruno V, Dragic Z et al (2003) (−)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology 45:895–906

    Article  CAS  Google Scholar 

  291. Williams R, Zhou Y, Niswender CM et al (2010) Re-exploration of the PHCCC scaffold: discovery of improved positive allosteric modulators of mGluR4. ACS Chem Neurosci 1:411–419

    Article  CAS  Google Scholar 

  292. Niswender CM, Lebois EP, Luo Q et al (2008) Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4): Part I. Discovery of pyrazolo[3, 4-d]pyrimidines as novel mGluR4 positive allosteric modulators. Bioorg Med Chem Lett 18:5626–5630

    Article  CAS  Google Scholar 

  293. Niswender CM, Johnson KA, Weaver CD et al (2008) Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol Pharmacol 74:1345–1358

    Article  CAS  Google Scholar 

  294. Williams R, Johnson KA, Gentry PR et al (2009) Synthesis and SAR of a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor 4 (mGluR4). Bioorg Med Chem Lett 19:4967–4970

    Article  CAS  Google Scholar 

  295. Engers DW, Rodriguez AL, Williams R et al (2009) Synthesis, SAR and unanticipated pharmacological profiles of analogues of the mGluR5 ago-potentiator ADX-47273. ChemMedChem 4:505–511

    Article  CAS  Google Scholar 

  296. Varney MA, Cosford ND, Jachec C et al (1999) SIB-1757 and SIB-1893: selective, noncompetitive antagonists of metabotropic glutamate receptor type 5. J Pharmacol Exp Ther 290:170–181

    CAS  Google Scholar 

  297. Gasparini F, Lingenhohl K, Stoehr N et al (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38:1493–1503

    Article  CAS  Google Scholar 

  298. Maggos C (2010) http://www.addexpharma.com/press-releases/press-release-details/article/development-of-adx10059-ended-for-long-term-use

  299. Porter RH, Jaeschke G, Spooren W et al (2005) Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther 315:711–721

    Article  CAS  Google Scholar 

  300. Wallberg A, Nilsson K, Osterlund K et al (2006) Phenyl ureas of creatinine as mGluR5 antagonists. A structure-activity relationship study of fenobam analogues. Bioorg Med Chem Lett 16:1142–1145

    Article  CAS  Google Scholar 

  301. Jaeschke G, Porter R, Buttelmann B et al (2007) Synthesis and biological evaluation of fenobam analogs as mGlu5 receptor antagonists. Bioorg Med Chem Lett 17:1307–1311

    Article  CAS  Google Scholar 

  302. Hamill TG, Krause S, Ryan C et al (2005) Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers. Synapse 56:205–216

    Article  CAS  Google Scholar 

  303. Ametamey SM, Treyer V, Streffer J et al (2007) Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688. J Nucl Med 48:247–252

    CAS  Google Scholar 

  304. Hintermann S, Vranesic I, Allgeier H et al (2007) ABP688, a novel selective and high affinity ligand for the labeling of mGlu5 receptors: identification, in vitro pharmacology, pharmacokinetic and biodistribution studies. Bioorg Med Chem 15:903–914

    Article  CAS  Google Scholar 

  305. Wyss MT, Ametamey SM, Treyer V et al (2007) Quantitative evaluation of 11C-ABP688 as PET ligand for the measurement of the metabotropic glutamate receptor subtype 5 using autoradiographic studies and a beta-scintillator. Neuroimage 35:1086–1092

    Article  Google Scholar 

  306. Gasparini F, Bilbe G, Gomez-Mancilla B et al (2008) mGluR5 antagonists: discovery, characterization and drug development. Curr Opin Drug Discov Dev 11:655–665

    CAS  Google Scholar 

  307. Lindsley CW, Emmitte KA (2009) Recent progress in the discovery and development of negative allosteric modulators of mGluR5. Curr Opin Drug Discov Dev 12:446–457

    CAS  Google Scholar 

  308. Rodriguez AL, Williams R (2007) Recent progress in the development of allosteric modulators of mGluR5. Curr Opin Drug Discov Dev 10:715–722

    CAS  Google Scholar 

  309. Spooren W, Gasparini F (2004) mGlu5 receptor antagonists: a novel class of anxiolytics? Drug News Perspect 17:251–257

    Article  CAS  Google Scholar 

  310. Rodriguez AL, Nong Y, Sekaran NK et al (2005) A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators. Mol Pharmacol 68:1793–1802

    CAS  Google Scholar 

  311. Sharma S, Rodriguez AL, Conn PJ et al (2008) Synthesis and SAR of a mGluR5 allosteric partial antagonist lead: unexpected modulation of pharmacology with slight structural modifications to a 5-(phenylethynyl)pyrimidine scaffold. Bioorg Med Chem Lett 18:4098–4101

    Article  CAS  Google Scholar 

  312. Sharma S, Kedrowski J, Rook JM et al (2009) Discovery of molecular switches that modulate modes of metabotropic glutamate receptor subtype 5 (mGlu5) pharmacology in vitro and in vivo within a series of functionalized, regioisomeric 2- and 5-(phenylethynyl)pyrimidines. J Med Chem 52:4103–4106

    Article  CAS  Google Scholar 

  313. Iso Y, Grajkowska E, Wroblewski JT et al (2006) Synthesis and structure-activity relationships of 3-[(2-methyl-1, 3-thiazol-4-yl)ethynyl]pyridine analogues as potent, noncompetitive metabotropic glutamate receptor subtype 5 antagonists; search for cocaine medications. J Med Chem 49:1080–1100

    Article  CAS  Google Scholar 

  314. Carroll FI, Kotturi SV, Navarro HA et al (2007) Synthesis and pharmacological evaluation of phenylethynyl[1, 2, 4]methyltriazines as analogues of 3-methyl-6-(phenylethynyl)pyridine. J Med Chem 50:3388–3391

    Article  CAS  Google Scholar 

  315. Micheli F, Bertani B, Bozzoli A et al (2008) Phenylethynyl-pyrrolo[1, 2-a]pyrazine: a new potent and selective tool in the mGluR5 antagonists arena. Bioorg Med Chem Lett 18:1804–1809

    Article  CAS  Google Scholar 

  316. Tehrani LR, Smith ND, Huang D et al (2005) 3-[Substituted]-5-(5-pyridin-2-yl-2H-tetrazol-2-yl)benzonitriles: identification of highly potent and selective metabotropic glutamate subtype 5 receptor antagonists. Bioorg Med Chem Lett 15:5061–5064

    Article  CAS  Google Scholar 

  317. Bach P, Nilsson K, Wallberg A et al (2006) A new series of pyridinyl-alkynes as antagonists of the metabotropic glutamate receptor 5 (mGluR5). Bioorg Med Chem Lett 16:4792–4795

    Article  CAS  Google Scholar 

  318. Ceccarelli SM, Jaeschke G, Buettelmann B et al (2007) Rational design, synthesis, and structure-activity relationship of benzoxazolones: new potent mglu5 receptor antagonists based on the fenobam structure. Bioorg Med Chem Lett 17:1302–1306

    Article  CAS  Google Scholar 

  319. Kulkarni SS, Newman AH (2007) Design and synthesis of novel heterobiaryl amides as metabotropic glutamate receptor subtype 5 antagonists. Bioorg Med Chem Lett 17:2074–2079

    Article  CAS  Google Scholar 

  320. Ceccarelli SM, Schlotterbeck G, Boissin P et al (2008) Metabolite identification via LC-SPE-NMR-MS of the in vitro biooxidation products of a lead mGlu5 allosteric antagonist and impact on the improvement of metabolic stability in the series. ChemMedChem 3:136–144

    Article  CAS  Google Scholar 

  321. Galatsis P, Yamagata K, Wendt JA et al (2007) Synthesis and SAR comparison of regioisomeric aryl naphthyridines as potent mGlu5 receptor antagonists. Bioorg Med Chem Lett 17:6525–6528

    Article  CAS  Google Scholar 

  322. Kulkarni SS, Newman AH (2007) Discovery of heterobicyclic templates for novel metabotropic glutamate receptor subtype 5 antagonists. Bioorg Med Chem Lett 17:2987–2991

    Article  CAS  Google Scholar 

  323. Milbank JB, Knauer CS, Augelli-Szafran CE et al (2007) Rational design of 7-arylquinolines as non-competitive metabotropic glutamate receptor subtype 5 antagonists. Bioorg Med Chem Lett 17:4415–4418

    Article  CAS  Google Scholar 

  324. Wendt JA, Deeter SD, Bove SE et al (2007) Synthesis and SAR of 2-aryl pyrido[2, 3-d]pyrimidines as potent mGlu5 receptor antagonists. Bioorg Med Chem Lett 17:5396–5399

    Article  CAS  Google Scholar 

  325. Wang B, Vernier JM, Rao S et al (2004) Discovery of novel modulators of metabotropic glutamate receptor subtype-5. Bioorg Med Chem 12:17–21

    Article  CAS  Google Scholar 

  326. Buttelmann B, Peters JU, Ceccarelli S et al (2006) Arylmethoxypyridines as novel, potent and orally active mGlu5 receptor antagonists. Bioorg Med Chem Lett 16:1892–1897

    Article  CAS  Google Scholar 

  327. Hammerland LG, Johansson M, Malmstrom J et al (2006) Structure-activity relationship of thiopyrimidines as mGluR5 antagonists. Bioorg Med Chem Lett 16:2467–2469

    Article  CAS  Google Scholar 

  328. Rodriguez AL, Williams R, Zhou Y et al (2009) Discovery and SAR of novel mGluR5 non-competitive antagonists not based on an MPEP chemotype. Bioorg Med Chem Lett 19:3209–3213

    Article  CAS  Google Scholar 

  329. Spanka C, Glatthar R, Desrayaud S et al (2010) Piperidyl amides as novel, potent and orally active mGlu5 receptor antagonists with anxiolytic-like activity. Bioorg Med Chem Lett 20:184–188

    Article  CAS  Google Scholar 

  330. Williams DL Jr, Lindsley CW (2005) Discovery of positive allosteric modulators of metabotropic glutamate receptor subtype 5 (mGluR5). Curr Top Med Chem 5:825–846

    Article  CAS  Google Scholar 

  331. Lindsley CW, Wisnoski DD, Leister WH et al (2004) Discovery of positive allosteric modulators for the metabotropic glutamate receptor subtype 5 from a series of N-(1, 3-diphenyl-1H- pyrazol-5-yl)benzamides that potentiate receptor function in vivo. J Med Chem 47:5825–5828

    Article  CAS  Google Scholar 

  332. Uslaner JM, Parmentier-Batteur S, Flick RB et al (2009) Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology 57:531–538

    Article  CAS  Google Scholar 

  333. Zhao Z, Wisnoski DD, O’Brien JA et al (2007) Challenges in the development of mGluR5 positive allosteric modulators: the discovery of CPPHA. Bioorg Med Chem Lett 17:1386–1391

    Article  CAS  Google Scholar 

  334. Ritzen A, Sindet R, Hentzer M et al (2009) Discovery of a potent and brain penetrant mGluR5 positive allosteric modulator. Bioorg Med Chem Lett 19:3275–3278

    Article  CAS  Google Scholar 

  335. Yang ZQ (2005) Agonists and antagonists for group III metabotropic glutamate receptors 6, 7 and 8. Curr Top Med Chem 5:913–918

    Article  Google Scholar 

  336. Mitsukawa K, Yamamoto R, Ofner S et al (2005) A selective metabotropic glutamate receptor 7 agonist: activation of receptor signaling via an allosteric site modulates stress parameters in vivo. Proc Natl Acad Sci USA 102:18712–18717

    Article  CAS  Google Scholar 

  337. Greco B, Lopez S, van der Putten H et al (2010) Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 332:1064–1071

    Article  CAS  Google Scholar 

  338. Nakamura M, Kurihara H, Suzuki G et al (2010) Isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. Bioorg Med Chem Lett 20:726–729

    Article  CAS  Google Scholar 

  339. Suzuki G, Tsukamoto N, Fushiki H et al (2007) In vitro pharmacological characterization of novel isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. J Pharmacol Exp Ther 323:147–156

    Article  CAS  Google Scholar 

  340. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  CAS  Google Scholar 

  341. Moriyama Y, Omote H (2008) Vesicular glutamate transporter acts as a metabolic regulator. Biol Pharm Bull 31:1844–1846

    Article  CAS  Google Scholar 

  342. Takamori S (2006) VGLUTs: ‘exciting’ times for glutamatergic research? Neurosci Res 55:343–351

    Article  CAS  Google Scholar 

  343. Kashani A, Lepicard E, Poirel O et al (2008) Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol Aging 29:1619–1630

    Article  CAS  Google Scholar 

  344. Kashani A, Betancur C, Giros B et al (2007) Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease. Neurobiol Aging 28:568–578

    Article  CAS  Google Scholar 

  345. Hinoi E, Takarada T, Tsuchihashi Y et al (2005) Glutamate transporters as drug targets. Curr Drug Targets CNS Neurol Disord 4:211–220

    Article  CAS  Google Scholar 

  346. Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 45:250–265

    Article  CAS  Google Scholar 

  347. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8:935–947

    Article  CAS  Google Scholar 

  348. Rose EM, Koo JC, Antflick JE et al (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29:8143–8155

    Article  CAS  Google Scholar 

  349. Koch HP, Brown RL, Larsson HP (2007) The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits. J Neurosci 27:2943–2947

    Article  CAS  Google Scholar 

  350. Teichberg VI, Cohen-Kashi-Malina K, Cooper I et al (2009) Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience 158:301–308

    Article  CAS  Google Scholar 

  351. Stafford MM, Brown MN, Mishra P et al (2010) Glutamate spillover augments GABA synthesis and release from axodendritic synapses in rat hippocampus. Hippocampus 20:134–144

    CAS  Google Scholar 

  352. Maragakis NJ, Rothstein JD (2004) Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 15:461–473

    Article  CAS  Google Scholar 

  353. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  CAS  Google Scholar 

  354. Su ZZ, Leszczyniecka M, Kang DC et al (2003) Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc Natl Acad Sci USA 100:1955–1960

    Article  CAS  Google Scholar 

  355. Yamashita A, Makita K, Kuroiwa T et al (2006) Glutamate transporters GLAST and EAAT4 regulate postischemic Purkinje cell death: an in vivo study using a cardiac arrest model in mice lacking GLAST or EAAT4. Neurosci Res 55:264–270

    Article  CAS  Google Scholar 

  356. Tanaka K, Watase K, Manabe T et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  CAS  Google Scholar 

  357. Lin CL, Bristol LA, Jin L et al (1998) Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20:589–602

    Article  CAS  Google Scholar 

  358. Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326:1464–1468

    Article  CAS  Google Scholar 

  359. Honig LS, Chambliss DD, Bigio EH et al (2000) Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Neurology 55:1082–1088

    Article  CAS  Google Scholar 

  360. Hoogland G, van Oort RJ, Proper EA et al (2004) Alternative splicing of glutamate transporter EAAT2 RNA in neocortex and hippocampus of temporal lobe epilepsy patients. Epilepsy Res 59:75–82

    Article  CAS  Google Scholar 

  361. Jacob CP, Koutsilieri E, Bartl J et al (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis 11:97–116

    CAS  Google Scholar 

  362. Matos M, Augusto E, Oliveira CR et al (2008) Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 156:898–910

    Article  CAS  Google Scholar 

  363. Vallejo-Illarramendi A, Domercq M, Perez-Cerda F et al (2006) Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis 21:154–164

    Article  CAS  Google Scholar 

  364. Miller BR, Dorner JL, Shou M et al (2008) Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 153:329–337

    Article  CAS  Google Scholar 

  365. Sari Y, Prieto AL, Barton SJ et al (2010) Ceftriaxone-induced up-regulation of cortical and striatal GLT1 in the R6/2 model of Huntington’s disease. J Biomed Sci 17:62

    Article  CAS  Google Scholar 

  366. Thone-Reineke C, Neumann C, Namsolleck P et al (2008) The beta-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke. J Hypertens 26:2426–2435

    Article  CAS  Google Scholar 

  367. Thompson CM, Davis E, Carrigan CN et al (2005) Inhibitor of the glutamate vesicular transporter (VGLUT). Curr Med Chem 12:2041–2056

    Article  CAS  Google Scholar 

  368. Campiani G, Fattorusso C, De Angelis M et al (2003) Neuronal high-affinity sodium-dependent glutamate transporters (EAATs): targets for the development of novel therapeutics against neurodegenerative diseases. Curr Pharm Des 9:599–625

    Article  CAS  Google Scholar 

  369. Mennini T, Fumagalli E, Gobbi M et al (2003) Substrate inhibitors and blockers of excitatory amino acid transporters in the treatment of neurodegeneration: critical considerations. Eur J Pharmacol 479:291–296

    Article  CAS  Google Scholar 

  370. Alaux S, Kusk M, Sagot E et al (2005) Chemoenzymatic synthesis of a series of 4-substituted glutamate analogues and pharmacological characterization at human glutamate transporters subtypes 1-3. J Med Chem 48:7980–7992

    Article  CAS  Google Scholar 

  371. Sagot E, Jensen AA, Pickering DS et al (2008) Chemo-enzymatic synthesis of (2S, 4R)-2-amino-4-(3-(2, 2-diphenylethylamino)-3-oxopropyl)pentanedioic acid: a novel selective inhibitor of human excitatory amino acid transporter subtype 2. J Med Chem 51:4085–4092

    Article  CAS  Google Scholar 

  372. Dunlop J, Eliasof S, Stack G et al (2003) WAY-855 (3-amino-tricyclo[2.2.1.02.6]heptane-1, 3-dicarboxylic acid): a novel, EAAT2-preferring, nonsubstrate inhibitor of high-affinity glutamate uptake. Br J Pharmacol 140:839–846

    Article  CAS  Google Scholar 

  373. Shimamoto K, Sakai R, Takaoka K et al (2004) Characterization of novel L-threo-beta-benzyloxyaspartate derivatives, potent blockers of the glutamate transporters. Mol Pharmacol 65:1008–1015

    Article  CAS  Google Scholar 

  374. Greenfield A, Grosanu C, Dunlop J et al (2005) Synthesis and biological activities of aryl-ether-, biaryl-, and fluorene-aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT-2. Bioorg Med Chem Lett 15:4985–4988

    Article  CAS  Google Scholar 

  375. Jensen AA, Erichsen MN, Nielsen CW et al (2009) Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1. J Med Chem 52:912–915

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Schaeffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaeffer, E., Duplantier, A. (2010). Glutamate and Neurodegenerative Disease. In: Dominguez, C. (eds) Neurodegenerative Diseases. Topics in Medicinal Chemistry, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2010_11

Download citation

Publish with us

Policies and ethics