Skip to main content

Control of Cell Axis

  • Chapter
  • First Online:
Plant Microtubules

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Abstract

Cell movement constitutes a basic mechanism in animal development, for instance during gastrulation or during the development of neural systems. Plant cells with their rigid cell walls cannot move and therefore had to evolve alternative mechanisms to organize their Bauplan. In plants, morphogenesis is controlled by the initiation of a cell axis during cell division and by the expression of this axis during subsequent cell expansion. Axiality of both division and expansion is intimately linked with specific microtubular arrays such as the radial array of endoplasmic microtubules, the preprophase band, the phragmoplast, and the cortical cytoskeleton. This chapter will review the role of microtubules in the control of cell axis, and attempt a synthesis of classical research with recent developments in the field. During the last few years, our understanding of two central enigmas of plant microtubule organization has been advanced substantially.

It had been observed for a long time that the spatial configuration of the phragmoplast was guided by events that take place prior to mitosis. However, the premitotic microtubular arrays disappear at the time when the spindle appears. It was therefore unclear how they could define the formation of a phragmoplast. The deposition of an endosomic belt adjacent to the phragmoplast, in combination with highly dynamic exploratory microtubules nucleated at the spindle poles, provides a conceptual framework for understanding these key events of cell axiality.

The microtubule–microfibril concept, which is central to understanding the axiality of cell expansion, has been enriched by molecular candidates and elaborate feedback controls between the cell wall and cytoskeleton. Special attention is paid to the impact of signalling to cortical microtubules, and to the mechanisms of microtubule reorientation. By means of live-cell imaging it has become possible to follow the behaviour of individual microtubules and thus to assess the roles of treadmilling and mutual sliding in the organization of microtubular arrays. Direction-dependent microtubule lifetimes, spatial patterns of post-translational modifications, and new mutants with deviating orientation of microtubules shed light on a complexity that is still far from being understood, but reveals a network of highly dynamic, nonlinear interactions that are endowed with pattern-generating properties. The chapter concludes with potential approaches to manipulation of the cell axis either through cell division or through cell expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdrakhamanova A, Wang QY, Khokhlova L, Nick P (2003). Is microtubule assembly a trigger for cold acclimation? Plant Cell Physiol 44:676–686

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Funada R, Imaizumi H, Ohtani J, Fukuzawa K (1995) Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. Planta 197:418–421

    Article  CAS  Google Scholar 

  • Akashi T, Kawasaki S, Shibaoka H (1990) Stabilization of cortical microtubules by the cell wall in cultured tobacco cells. Effect of extensin on the cold stability of cortical microtubules. Planta 182:363–369

    Article  Google Scholar 

  • Andersen AS (1979) Plant growth retardants: present and future use in food production. NATO ASI Ser USA 22:251–277

    Google Scholar 

  • Ballaré CL, Scopel AL (1997) Phytochrome signalling in plant canopies: testing its population-level implications with photoreceptor mutants of Arabidopsis. Funct Ecol 11:441–450

    Article  Google Scholar 

  • Bannigan A, Wiedemeier AMD, Williamson RE, Overall RL, Baskin TI (2006) Cortical microtubule arrays lose uniform alignment between cells and are oryzalin resistant in the Arabidopsis mutant, radially swollen 6. Plant Cell Physiol 47:949–958

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW (1969) Differences in response to colchicine by differentiating xylem cells in roots of Pisum. Protoplasma 68:79–83

    Article  PubMed  CAS  Google Scholar 

  • Basak MN (1962) Nutrient uptake by the rice plant and its effect on yield. Agron J 54:373–376

    Article  Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Bivens NJ (1995) Stimulation of radial expansion in Arabidopsis roots by inhibitors of actomyosin and vesicle secretion but not by various inhibitors of metabolism. Planta 197:514–521

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Cande WZ (1990) The structure and function of the mitotic spindle in flowering plants. Annu Rev Plant Physiol 41:277–315

    Article  Google Scholar 

  • Bergfeld R, Speth V, Schopfer P (1988) Reorientation of microfibrils and microtubules at the outer epidermal wall of maize coleoptiles during auxin-mediated growth. Bot Acta 101:57–67

    CAS  Google Scholar 

  • Bichet A, Desnos T, Turner S, Grandjean O, Höfte H (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J 25:137–148

    Article  PubMed  CAS  Google Scholar 

  • Binarová P, Cenklová V, Hause B, Kubátová E, Lysák M, Doležel J, Bogre L, Dráber P (2000) Nuclear gamma-tubulin during acentriolar plant mitosis. Plant Cell 12:433–442

    Article  PubMed  Google Scholar 

  • Bin-Bing ZH, Kirschner MW (1999) Quantitative measurement of the catastrophe rate of dynamic microtubules. Cell Motil Cytoskeleton 43:43–51

    Article  Google Scholar 

  • Blancaflor EB, Hasenstein KH (1993) Organization of cortical microtubules in graviresponding maize roots. Planta 191:230–237

    Google Scholar 

  • Borner A, Plaschke J, Korzun V, Worland AJ (1996) The relationship between the dwarfing genes of wheat and rye. Euphytica 89:69–75

    Article  Google Scholar 

  • Brown RC, Lemmon BE (1991) The cytokinetic apparatus in meiosis: control of division plane in the absence of a preprophase band of microtubules. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 259–273

    Google Scholar 

  • Bulinski JC, Gundersen GG (1991) Stablilization and post-translational modification of microtubules during cellular morphogenesis. BioEssays 13:285–293

    Article  PubMed  CAS  Google Scholar 

  • Burk DH, Liu B, Zhong R, Morrison WH, Ye ZH (2001), A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13:807–827

    Article  PubMed  CAS  Google Scholar 

  • Burk DH, Ye ZH (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule severing protein. Plant Cell 14:2145–2160

    Article  PubMed  CAS  Google Scholar 

  • Buschmann H, Fabri CO, Hauptmann M, Hutzler P, Laux T, Lloyd CW, Schäffner AR (2004) Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol 14:1515–1521

    Article  PubMed  CAS  Google Scholar 

  • Campanoni P, Blasius B, Nick P (2003) Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol 133:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Cande WZ (1990) Centrosomes: composition and reproduction. Curr Opin Cell Biol 2:301–305

    Article  PubMed  CAS  Google Scholar 

  • Cappelletti G, Maggioni MG, Tedeschi G, Macia R (2003) Protein tyrosine nitration is triggered by nerve growth factor during neuronal differentiation of PC12 cells. Exp Cell Res 288:9–20

    Article  PubMed  CAS  Google Scholar 

  • Caudron N, Valiron O, Usson Y, Valiron P, Job D (2000) A reassessment of the factors affecting microtubule assembly and disassembly in vitro. J Mol Biol 297:211–220

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Calder G, Fox S, Lloyd C (2007) Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat Cell Biol 9:171–175

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5:967–971

    Article  PubMed  CAS  Google Scholar 

  • Cleary AL, Hardham AR (1993) Pressure-induced reorientation of cortical microtubules in epidermal cells of Lolium rigidum leaves. Plant Cell Physiol 34:1003–1008

    Google Scholar 

  • Colasanti J, Cho SO, Wick S, Sundaresan V (1993) Localization of the functional p34cdc2 homolog of maize in root tip and stomatal complex cells: association with predicted division sites. Plant 1101–1111

    Google Scholar 

  • Dhonukshe P, Mathur J, Hülskamp M, Gadella TWJ (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11–26

    Article  PubMed  CAS  Google Scholar 

  • Duckett CM, Lloyd CW (1994) Gibberellic acid-induced microtubule orientation in dwarf peas is accompanied by rapid modification of an α-tubulin isotype. Plant J 5:363–372

    Article  CAS  Google Scholar 

  • Durso NA, Cyr RJ (1994) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor 1α. Plant Cell 6:893–905

    Article  PubMed  CAS  Google Scholar 

  • Edelmann H, Bergfeld R, Schopfer P (1989) Role of cell-wall biogenesis in the initiation of auxin mediated growth in coleoptiles of Zea mays L. Planta 179:486–494

    Article  CAS  Google Scholar 

  • Eiserich JP, Estévez AG, Bamberg TV, Ye YZ, Chumley PH, Beckman JS, Freeman BA (1999) Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: A nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci USA 96:6365–6370

    Article  PubMed  CAS  Google Scholar 

  • Emons AM, Derksen JHM, Sassen MMA (1992): Do microtubules orient plant cell wall microfibrils? Physiol Plantarum 84:486–493

    Article  CAS  Google Scholar 

  • Emons AM, Mulder BM (1998) The making of the architecture of the plant cell wall: How cells exploit geometry. Proc Natl Acad Sci USA 95:7215–7219

    Article  PubMed  CAS  Google Scholar 

  • Erck C, Frank R, Wehland J (2000) Tubulin–tyrosine ligase, a long-lasting enigma. Neurochem Res 25:5–10

    Article  PubMed  CAS  Google Scholar 

  • Ersfeld K, Wehland J, Plessmann U, Dodemont H, Gerke V, Weber K (1993) Characterization of the tubulin–tyrosine ligase. J Cell Biol 120:725–732

    Article  PubMed  CAS  Google Scholar 

  • Falconer MM, Seagull RW (1985) Xylogenesis in tissue culture: taxol effects on microtubule reorientation and lateral association in differentiating cells. Protoplasma 128:157–166

    Article  Google Scholar 

  • Fisher DD, Cyr RJ (1998) Extending the microtubule/microfibril paradigm – cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol 116:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Fisher DD, Gilroy S, Cyr RJ (1998) Evidence for opposing effects of calmodulin on cortical microtubules. Plant Physiol 112:1079–1087

    Google Scholar 

  • Fry SC (1979) Phenolic components of the primary cell wall and their possible role in the hormonal regulation of growth in spinach. Planta 146:343–351

    Article  CAS  Google Scholar 

  • Fukuda H, Kobayashi H (1989) Dynamic organization of the cytoskeleton during tracheary-element differentiation. Dev Growth Differ 31:9–16

    Article  Google Scholar 

  • Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The SPIRAL genes are required for directional control of cell plates elongation in Arabidopsis thaliana. Development 127:4443–4453

    PubMed  CAS  Google Scholar 

  • Furuya M, Pjon CJ, Fujii T, Ito M (1969) Phytochrome action in Oryza sativa L. III. The separation of photoperceptive site and growing zone in coleoptiles, and auxin transport as effector system. Dev Growth Differ 11:62–75

    Article  PubMed  CAS  Google Scholar 

  • Gardiner JC, Harper JDI, Weerakon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J (2001) A 90-kD Phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A, Emons AMC (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245

    Article  PubMed  CAS  Google Scholar 

  • Giddings TH, Staehelin A (1991) Microtubule-mediated control of microfibril deposition. A re-examination of the hypothesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 85–99

    Google Scholar 

  • Giddings TH, Staehelin LA (1988) Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils in Closterium spec. Planta 173:22–30

    Article  Google Scholar 

  • Gierer A (1981) Generation of biological patterns and form: some physical, mathematical, and logical aspects. Progr Biophys Mol Biol 37:1–47

    Article  CAS  Google Scholar 

  • Godbolé R, Michalke W, Nick P, Hertel R (2000) Cytoskeletal drugs and gravity-induced lateral auxin transport in rice coleoptiles. Plant Biol 2:176–181

    Article  Google Scholar 

  • Grace J (1977) Plant response to wind. Academic, London, pp 121–142

    Google Scholar 

  • Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138:1404–1405

    Article  PubMed  CAS  Google Scholar 

  • Green PB (1980) Organogenesis – a biophysical view. Annu Rev Plant Physiol 31:51–82

    Article  Google Scholar 

  • Green PB, King A (1966) A mechanism for the origin of specifically oriented textures with special reference to Nitella wall texture. Aust J Biol Sci 19:421–437

    Google Scholar 

  • Green PB, Lang JM (1981) Towards a biophysical tehory of organogenesis: birefringence observations on regenerating leaves in the succulent Graptopetalum paraguayense. Planta 151:413–426

    Article  Google Scholar 

  • Gu XJ, Verma DPS (1995) Phragmoplastin, a dynamin-like protein associated with cell plate formation in plants. EMBO J 15:695–704

    Google Scholar 

  • Gunning BES, Hardham AR (1982) Microtubules. Annu Rev Plant Physiol 33:651–698

    Article  CAS  Google Scholar 

  • Gunning BES, Sammut M (1990) Rearrangement of microtubules involved in establishing cell division planes start immediately after DNA synthesis and are completed just before mitosis. Plant Cell 2:1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Gurland G, Gundersen GG (1995) Stable, Detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J Cell Biol 131:1275–1290

    Article  PubMed  CAS  Google Scholar 

  • Hardham AR, Green PB, Lang JM (1980) Reorganization of cortical microtubules and cellulose deposition during leaf formation of Graptopetalum paraguayense. Planta 149:181–195

    Article  CAS  Google Scholar 

  • Hardham AR, Gunning BES (1980) Some effects of colchicine on microtubules and cell division in roots of Azolla pinnata. Protoplasma 102:31–51

    Article  CAS  Google Scholar 

  • Hasenstein KH, Blancaflor EB, Lee JS (1999) The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots. Physiol Plant 105:729–738

    Article  PubMed  CAS  Google Scholar 

  • Hasezawa S, Nozaki H (1999) Role of cortical microtubules in the orientation of cellulose microfibril deposition in higher-plant cells. Protoplasma 209:98–104

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Kato T (2006) Cortical control of plant microtubules. Curr Opin Plant Biol 9:5–11

    Article  PubMed  CAS  Google Scholar 

  • Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48:445–449

    Article  PubMed  CAS  Google Scholar 

  • Hejnowicz Z (2005) Autonomous changes in the orientation of cortical microtubules underlying the helicoidal cell wall of the sunflower hypocotyl epidermis: spatial variation translated into temporal changes. Protoplasma 225:243–256

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Fosket DE (1971) The role of microtubules in vessel member differentiation in Coleus. Protoplasma 72:213–236

    Article  Google Scholar 

  • Herth W (1980) Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: Evidence for a gap between polymerization and microfibril formation. J Cell Biol 87:442–450

    Article  PubMed  CAS  Google Scholar 

  • Himmelspach R, Nick P (2001) Gravitropic microtubule reorientation can be uncoupled from growth. Planta 212:184–189

    Article  PubMed  CAS  Google Scholar 

  • Himmelspach R, Nick P, Schäfer E, Ehmann B (1997) Developmental and light-dependent changes of the cytosolic chaperonin containing TCP-1 (CCT) subunits in maize seedlings, and the localization in coleoptiles. Plant J 12:1299–1310

    Article  PubMed  CAS  Google Scholar 

  • Himmelspach R, Williamson RE, Wasteneys GO (2003) Cellulose micro.bril alignment recovers from DCB-induced disruption despite microtubule disorganization. Plant J 36:565–575

    Article  PubMed  CAS  Google Scholar 

  • Himmelspach R, Wymer CL, Lloyd CW, Nick P (1999) Gravity-induced reorientation of cortical microtubules observed in vivo. Plant J 18:449–453

    Article  PubMed  CAS  Google Scholar 

  • Himmelspach R, Wymer CL, Lloyd CW, Nick P (1999) Gravity-induced re-orientation of cortical microtubules observed in vivo. Plant J 18:449–453

    Article  PubMed  CAS  Google Scholar 

  • Hogetsu T, Shibaoka H (1978) Effects of colchicine on cell shape and microfibril arrangement in the cell wall of Closterium acerosum. Planta 140:15–18

    Article  CAS  Google Scholar 

  • Hush JM, Hawes CR, Overall RL (1990) Interphase microtubule re-orientation predicts a new cell polarity in wounded pea roots. J Cell Sci 96:47–61

    Google Scholar 

  • Hush JM, Overall RL (1991) Electrical and mechanical fields orient cortical microtubules in higher plant tissues. Cell Biol Int Rev 15:551–560

    Article  Google Scholar 

  • Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub JM, Temurak N, van Dijk J, Boucher D, van Dorsselaer A, Suryavanshi S, Gaertig J, Eddé B (2005) Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308:1758–1762

    Article  PubMed  CAS  Google Scholar 

  • McLeod JG, Payne JF (1996) AC rifle winter rye. Can J Plant Sci 76:143–144

    Google Scholar 

  • Jung G, Wernicke W (1990) Cell shaping and microtubules in developing mesophyll of wheat (Triticum aestivum L.). Protoplasma 153:141–148

    Article  Google Scholar 

  • Kataoka H (1982) Colchicine-induced expansion of Vaucheria cell apex. Alteration from isotropic to transversally anisotropic growth. Bot Mag Tokyo 95:317–330

    Article  CAS  Google Scholar 

  • Katsuta J, Shibaoka H (1988) The roles of the cytoskeleton and the cell wall in nuclear positioning in tobacco BY-2 cells. Plant Cell Physiol 29:403–413

    CAS  Google Scholar 

  • Khawaja S, Gundersen GG, Bulinski JC (1988) Enhanced stability of microtubules enriched in de-tyrosinylated tubulin is not a direct function of de-tyrosination level. J Cell Biol 106:141–149

    Article  PubMed  CAS  Google Scholar 

  • Kilmartin JV, Wright B, Milstein C (1982) Rat monoclonal antitubulin antibodies derived by using a new non-secreting rat cell line. J Cell Biol 93:576–582

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2086

    Article  PubMed  CAS  Google Scholar 

  • Knittel H, Lang H, Schott PE, Höppner P (1983) Verbesserung der Standfestigkeit – auch bei Gerste und Roggen. BASF Mitt Landbau 2:1–31

    Google Scholar 

  • Kobayashi H, Fukuda H, Shibaoka H (1988) Interrelation between the spatial disposition of actin filaments and microtubules during the differentiation of tracheary elements in cultured Zinnia cells. Protoplasma 143:29–37

    Article  Google Scholar 

  • Kreis TE (1987) Microtubules containing de-tyrosinylated tubulin are less dynamic. EMBO J 6:2597–2606

    PubMed  CAS  Google Scholar 

  • Kreitzer G, Liao G, Gundersen GG (1999) Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol Biol Cell 10:1105–1118

    PubMed  CAS  Google Scholar 

  • Kristen U (1985) The cell wall. Progr Bot 47:1–8

    Google Scholar 

  • Kumagai F, Yoneda A, Tomida T, Sano T, Nagata T, Hasezawa S (2001) Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol 42:723–732

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Flavin M (1981) Preferential action of a brain detyrosinolating carboxypeptidase on polymerized tubulin. J Biol Chem 256:7678–7686

    PubMed  CAS  Google Scholar 

  • Kurakin A (2005) Self-organization versus Watchmaker: stochastic dynamics of cellular organization. Biol Chem 386:247–254

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Bergfeld R, Schopfer P (1987) Cooperation of epidermal and internal tissues in auxin mediated growth of maize coleoptiles. Planta 170:168–180

    Article  CAS  Google Scholar 

  • Kwon YW, Yim KO (1986) Paclobutrazol in rice. FFTC Book Ser Taiwan 35:130–137

    Google Scholar 

  • Lambert AM (1993) Microtubule-organizing centers in higher plants. Curr Opin Cell Biol 5:116–122

    Article  PubMed  CAS  Google Scholar 

  • Lang JM, Eisinger WR, Green PB (1982) Effects of ethylene on the orientation of microtubules and cellulose microfibrils of pea epicotyls with polylamellate cell walls. Protoplasma 110:5–14

    Article  CAS  Google Scholar 

  • Laskowski MJ (1990) Microtubule orientation in pea stem cells: a change in orientation follows the initiation of growth rate decline. Planta 181:44–52

    Article  Google Scholar 

  • Laude HH, Pauli AW (1956) Influence of lodging on yield and other characters in winter wheat. Agron J 148:453–455

    Google Scholar 

  • Ledbetter MC, Porter KR (1963) A microtubule in plant cell fine structure. J Cell Biol 12:239–250

    Article  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2 ), H2O2, and OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) γ-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6:303–314

    Article  PubMed  CAS  Google Scholar 

  • Lloyd CW (1991) Cytoskeletal elements of the phragmosome establish the division plane in vacuolated plant cells. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 245–257

    Google Scholar 

  • Lloyd CW (1994) Why should stationary plant cells have such dynamic microtubules? Mol Biol Cell 5:1277–1280

    PubMed  CAS  Google Scholar 

  • Lloyd CW, Chan J, Hussey PI (2004) Microtubules and microtubule-associated proteins. In: Hussey PI (ed) The plant cytoskeleton in cell differentiation and development. CRC Blackwell, Oxford, pp 1–27

    Google Scholar 

  • Lloyd CW, Seagull RW (1985) A spring for plant cell biology: microtubules as dynamic helices. Trends Biochem Sci 10:476–478

    Article  CAS  Google Scholar 

  • Lloyd CW, Slabas AR, Powell AJ, Lowe SB (1980) Microtubules, protoplasts and plant cell shape. An immunofluorescent study. Planta 147:500–506

    Article  Google Scholar 

  • Lockhart J (1960) Intracellular mechanisms of growth inhibition by radiant energy. Plant Physiol 35:129–135

    PubMed  CAS  Google Scholar 

  • Ludueña RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    Article  PubMed  Google Scholar 

  • Luib M, Schott PE (1990) Einsatz von Bioregulatoren. In: Haug G, Schuhmann G, Fischbeck G (eds) Pflanzenproduktion im Wandel – Neue Aspekte in den Agrarwissenschaften. Verlag Chemie, Weinheim, pp 275–304

    Google Scholar 

  • Lukowitz W, Mayer U, Jürgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84:61–71

    Article  PubMed  CAS  Google Scholar 

  • Lynch TM, Lintilhac PM (1997) Mechanical signals in plant development: a new method for single cell studies. Develop Biol 181:246–256

    Article  PubMed  CAS  Google Scholar 

  • MacRae TH (1997) Tubulin post-translational modifications – enzymes and their mechanisms of action. Eur J Biochem 244:265–278

    Article  PubMed  CAS  Google Scholar 

  • Makela P, Varaala L, Peltonensainio P (1996) Agronomic comparison of Minnesota-adapted dwarf oat with semi-dwarf, intermediate, and tall oat lines adapted to Northern growing conditions. Can J Plant Sci 76:727–734

    Google Scholar 

  • Marc J, Granger CL, Brincat J, Fisher DD, Kao TH, McCubbin AG, Cyr RJ (1998) GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10:1927–1939

    Article  PubMed  CAS  Google Scholar 

  • Marc J, Palevitz BA (1990) Regulation of the spatial order of cortical microtubules in developing guard cells in Allium. Planta 182:626–634

    Article  Google Scholar 

  • Marc J, Sharkey DE, Durso NA, Zhang M, Cyr RJ (1996) Isolation of a 90-kD microtubule-associated protein from tobacco membranes. Plant Cell 8:2127–2138

    Article  PubMed  CAS  Google Scholar 

  • Mayumi K, Shibaoka H (1996) The cyclic reorientation of cortical microtubules on walls with crossed polyllamellate structure. Effects of plant hormones and an inhibitor of protein kinases on the progression of the cycle. Protoplasma 195:112–122

    Article  CAS  Google Scholar 

  • McClinton RS, Sung ZR (1997) Organization of cortical microtubules at the plasma membrane in Arabidopsis. Planta 201:252–260

    Article  PubMed  CAS  Google Scholar 

  • Mickovski SB, Ennos AR (2003) The effect of unidirectional stem flexing on shoot and root morphology and architecture in young Pinus sylvestris trees. Can J Forest Res 33:2202–2209

    Article  Google Scholar 

  • Mineyuki Y, Iida H, Anraku Y (1994) Loss of microtubules in the interphase cells of onion (Allium cepa L.) root tips from the cell cortex and their appearance in the cytoplasm after treatment with cycloheximide. Plant Physiol 104:281–284

    PubMed  CAS  Google Scholar 

  • Mineyuki Y, Marc J, Palevitz BA (1988) Formation of the oblique spindle in dividing guard mother cells of Allium. Protoplasma 147:200–203

    Article  Google Scholar 

  • Mita T, Katsumi M (1986) Gibberellin control of microtubule arrangement in the mesocotyl epidermal cells of the d5 mutant of Zea mays L. Plant Cell Physiol 27:651–659

    Google Scholar 

  • Morejohn LC (1991) The molecular pharmacology of plant tubulin and microtubules. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 29–43

    Google Scholar 

  • Mulder B, Schell J, Emons AM (2004) How the geometrical model for plant cell wall formation enables the production of a random texture. Cellulose 11:395–401

    Article  CAS  Google Scholar 

  • Murata T, Wada M (1991) Effects of centrifugation on preprophase-band formation in Adiantum protonemata. Planta 183:391–398

    Article  Google Scholar 

  • Nee M, Chiu L, Eisinger W (1978) Induction of swelling in pea internode tissue by ethylene. Plant Physiol 62:902–906

    Article  PubMed  CAS  Google Scholar 

  • Nick P (1997) Phototropic induction can shift the gradient of crown-root emergence in maize. Bot Acta 110:291–297

    Google Scholar 

  • Nick P (1998) Signalling to the microtubular cytoskeleton in plants. Int Rev Cytol 184:33–80

    Article  CAS  Google Scholar 

  • Nick P, Bergfeld R, Schäfer E, Schopfer P (1990) Unilateral reorientation of microtubules of the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. Planta 181:162–168

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Furuya M (1993) Phytochrome-dependent decrease of gibberellin sensitivity. Plant Growth Regul 12:195–206

    Article  CAS  Google Scholar 

  • Nick P, Furuya M (1996) Buder revisited – cell and organ polarity during phototropism. Plant Cell Environ 19:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Furuya M, Schäfer E (1991) Do microtubules control growth during tropism? Experiments with maize coleoptiles. Plant Cell Physiol 32:999–1006

    Google Scholar 

  • Nick P, Furuya M, Schäfer E (1992) Auxin redistribution during first positive phototropism in corn coleoptiles – microtubule reorientation and the Cholodny–Went theory. Plant Physiol 99:1302–1308

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Godbolé R, Wang QY (1997) Probing rice gravitropism with cytoskeletal drugs and cytoskeletal mutants. Biol Bull 192:141–143

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Heuing A, Ehmann B (2000) Plant chaperonins: a role in microtubule-dependent wall-formation? Protoplasma 211:234–244

    Article  CAS  Google Scholar 

  • Nick P, Schäfer E (1988) Spatial memory during the tropism of maize (Zea mays L.) coleoptiles. Planta 175:380–388

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Schäfer E (1994) Polarity induction versus phototropism in maize: auxin cannot replace blue light. Planta 195:63–69

    Article  CAS  Google Scholar 

  • Nick P, Yatou O, Furuya M, Lambert AM (1994) Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC. Plant J 6:651–663

    Article  CAS  Google Scholar 

  • Nick P (1999) Signals, motors, morphogenesis – the cytoskeleton in plant development. Plant Biol 1:169–179

    Article  CAS  Google Scholar 

  • Nishiyama I (1986) Lodging of rice plants and countermeasure. FFTC Book Ser Taiwan 34:152–163

    Google Scholar 

  • Oda K, Suzuki M, Odagawa T (1966) Varietal analysis of physical characters in wheat and barley plants relating to lodging and lodging index. Bull Natl Inst Agric Sci Tokyo 15:55–91

    Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1995) The effect of taxol on Triticum preprophase root cells – preprophase microtubule band organization seems to depend n new microtubule assembly. Protoplasma 186:72–78

    Article  CAS  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Parness J, Horwitz SB (1981) Taxol binds to polymerized tubulin in vitro. J Cell Biol 91:479–487

    Article  PubMed  CAS  Google Scholar 

  • Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard LL, Schmit AC, Philippe-Guerche P, Bouchez D (2006) γ-Tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18:1412–1425

    Article  PubMed  CAS  Google Scholar 

  • Patel SAR, Meulia T, Dixit R, Cyr R, Meier I (2004) Arabidopsis WPP-domain proteins are developmentally associated with the nuclear envelope and promote cell division. Plant Cell 16:3260–3273

    Article  PubMed  CAS  Google Scholar 

  • Pay A, Resch K, Frohnmeyer H, Fejes E, Nagy F, Nick P (2002) Plant RanGAPs are localized at the nuclear envelope in interphase and associated with microtubules in mitotic cells. Plant J 30:699–709

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) Green revolution genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Pereira G, Schiebel E (1997) Centrosome-microtubule nucleation. J Cell Sci 110:295–300

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD (1967) The effects of colchicine on the ultrastructure of dividing plant cells, xylem wall differentiation and distribution of cytoplaamic microtubules. Develop Biol 15:206–236

    Article  CAS  Google Scholar 

  • Preston RD (1988) Cellulose-microfibril-orienting mechanisms in plant cell walls. Planta 174:67–74

    Article  CAS  Google Scholar 

  • Prodhan AKMA, Funada R, Ohtani J, Abe H, Fukuzawa K (1995) Orientation of microfibrils and microtubules in developing tension-wood fibres of Japanese ash (Fraxinus mandshurica var. japonica). Planta 196:577–585

    Article  CAS  Google Scholar 

  • Roberts LW, Baba S (1968) IAA-induced xylem differentiation in the presence of colchicine. Plant Cell Physiol 9:315–321

    CAS  Google Scholar 

  • Robinson DG, Quader H (1981) Structure, synthesis, and orientation of microfibrils. IX: A freeze fracture investigation of the Oocystis plasma membrane after inhibitor treatments. Eur J Cell Biol 25:278–288

    PubMed  CAS  Google Scholar 

  • Robinson DG, Quader H (1981) Structure, synthesis, and orientation of microfibrils. IX: A freeze fracture investigation of the Oocystis plasma membrane after inhibitor treatments. Eur J Cell Biol 25:278–288

    PubMed  CAS  Google Scholar 

  • Robinson DG, Quader H (1982) The microtubule–microfibril syncrome. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic, London, pp 109–126

    Google Scholar 

  • Robson PRH, Mccormac AC, Irvine AS, Smith H (1996) Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nat Biotechnol 14:995–998

    Article  PubMed  CAS  Google Scholar 

  • Sakiyama M, Shibaoka H (1990) Effects of abscisic acid on the orientation and cold stability of cortical microtubules in epicotyl cells of the dwarf pea. Protoplasma 157:165–171

    Article  CAS  Google Scholar 

  • Sakiyama-Sogo M, Shibaoka H (1993) Gibberellin A3 and abscisic acid cause the reorientation of cortical microtubules in epicotyl cells of the decapitated dwarf pea. Plant Cell Physiol 34:431–437

    CAS  Google Scholar 

  • Samuels AL, Giddings TH, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells – a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Sano T, Higaki T, Oda Y, Hayashi T, Hasezawa S (2005) Appearance of actin microfilament twin peaks in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin. Plant J 44:595–605

    Article  PubMed  CAS  Google Scholar 

  • Schlenker G (1937) Die Wuchsstoffe der Pflanzen. Lehmanns, München, pp 18–19

    Google Scholar 

  • Schott PE, Lang H (1977) Mittel zur Regulierung des Pflanzenwachstums. BASF Patent No DE 2755940C2

    Google Scholar 

  • Schreiner C, Reed HS (1908) The toxic action of certain organic plant constituents. Bot Gaz USA 45:73–102

    Article  CAS  Google Scholar 

  • Seagull RW (1990) The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers. Protoplasma 159:44–59

    Article  CAS  Google Scholar 

  • Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300:1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Shibaoka H (1993) Regulation by gibberellins of the orientation of cortical microtubules in plant cells. Austr J Plant Physiol 20:461–470

    Article  CAS  Google Scholar 

  • Shimamura M, Brown RC, Lemmon BE, Akashi T, Mizuno K, Nishihara N, Tomizawa KI, Yoshimoto K, Deguchi H, Hosoya H, Mineyuki Y (2004) Gamma-tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 16:45–59

    Article  PubMed  CAS  Google Scholar 

  • Skoufias DA, Wilson L (1998) Assembly and colchicine binding characteristics of tubulin with maximally tyrosinylated and de-tyrosinylated alpha-tubulins. Arch Biochem Biophys 351:115–122

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1981) Adaptation to shade. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworths, London, pp 159–173

    Google Scholar 

  • Smith LG (2005) Spatial control of cell expansion by the plant cytoskeleton. Ann Rev Cell Develop Biol 21:271–295

    Article  CAS  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge

    Google Scholar 

  • Stoppin V, Vantard M, Schmit AC, Lambert AM (1994) Isolated plant nuclei nucleate microtubule assembly: the nucleus surface in higher plants has centrosome-like activity. Plant Cell 6:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Stoppin-Mellet V, Peter C, Lambert AM (2000) Distribution of gamma-tubulin in higher plant cells: cytosolic gamma-tubulin is part of high molecular weight complexes. Plant Biol 2:290–296

    Article  CAS  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    Article  PubMed  CAS  Google Scholar 

  • Thitamadee S, Tuchihara K, Hashimoto T (2002). Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193–196

    Article  PubMed  CAS  Google Scholar 

  • Thomas DDS, Dunn DM, Seagull RW (1977) Rapid cytoplasmic responses of oat coleoptiles to cytochalasin B, auxin, and colchicine. Can J Bot 55:1797–1800

    CAS  Google Scholar 

  • Thompson DW (1959) On growth and form. University Press, Cambridge, pp 465–644

    Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Berlin Heidelberg New York, pp 1–706

    Google Scholar 

  • Tolbert NE (1960) (2-Chloroethyl)trimethyl-ammonium chloride and related compounds as plant growth substances. II. Effect on growth of wheat. Plant Physiol 35:380–385

    PubMed  CAS  Google Scholar 

  • Toyomasu T, Yamane H, Murofushi N, Nick P (1994) Phytochrome inhibits the effectiveness of gibberellins to induce cell elongation in rice. Planta 194:256–263

    Article  CAS  Google Scholar 

  • Toyomasu T, Yamane H, Murofushi N, Nick P (1994) Phytochrome inhibits the effectiveness of gibberellins to induce cell elongation in rice. Planta 194:256–263

    Article  CAS  Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375:676–677

    Article  CAS  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lon, B Biol 237:37–72

    Article  Google Scholar 

  • Vantard M, Leviliiers N, Hill AM, Adoutte A, Lambert AM (1990) Incorporation of Paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubue assembly. Proc Natl Acad Sci USA 87:8825–8829

    Article  PubMed  CAS  Google Scholar 

  • Vaughan MA, Vaughn KC (1988) Carrot microtubules are dinitroaniline resistant. I. Cytological and cross-resistance studies. Weed Res 28:73–83

    Article  Google Scholar 

  • Vaughn KC (2000) Anticytoskeletal Herbicides. In: Nick P (ed) Plant microtubules – potential for biotechnology. Springer, Berlin Heidelberg New York, pp 193–205

    Google Scholar 

  • Vaughn KC, Renzaglia A (2006) Structural and immunocytochemical characterization of the Ginkgo biloba L. sperm motility apparatus. Protoplasma 227:165–173

    Article  PubMed  CAS  Google Scholar 

  • Wang QY, Nick P (2001) Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant Cell Physiol 42:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    Article  PubMed  CAS  Google Scholar 

  • Watts DI, Monteiro MJ, Cox RA (1987) Identification of Eco-RV fragments spanning the n-alpha tubulin gene of Physarum. FEBS Lett 241:229–233

    Article  Google Scholar 

  • Weibel RO, Pendleton JW (1961) Effect of artificial lodging on winter wheat grain yield and quality. Agron J 56:187–188

    Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    Article  PubMed  CAS  Google Scholar 

  • Wick SM (1991) The preprophase band. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 231–244

    Google Scholar 

  • Wiese C, Zheng YX (1999) Gamma-tubulin complexes and their interaction with microtubule-organizing centers. Curr Opin Struct Biol 9:250–259

    Article  PubMed  CAS  Google Scholar 

  • Wiesler B, Wang QY, Nick P (2002) The stability of cortical microtubules depends on their orientation. Plant J 32:1023–1032

    Article  PubMed  CAS  Google Scholar 

  • Wymer CL, Lloyd CW (1996) Dynamic microtubules: Implications for cell wall patterns. Trends Plant Sci 1:222–227

    Google Scholar 

  • Wymer CL, Fisher DD, Moore RC, Cyr RJ (1996) Elucidating the mechanism of cortical microtubule reorientation in plant cells. Cell Motil Cytoskeleton 35:162–173

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara H, Sonobe S, Shibaoka H (1992) ATP-sensitive binding to microtubules of polypeptides extracted from isolated phragmoplasts of tobacco BY-2 cells. Plant Cell Physiol 33:601–608

    CAS  Google Scholar 

  • Yasuhara H, Sonobe S, Shibaoka S (1993) Effects of taxol on the development of the cell plate and of the phragmoplast in tobacco BY-2 cells. Plant Cell Physiol 34:21–29

    CAS  Google Scholar 

  • Yoshizawa N (1987) Cambial responses to the stimulus of inclination and structural variation of compression wood tracheids in gymnosperms. Bull Utsunomiya Univ For 23:23–141

    Google Scholar 

  • Young T, Hyams JS, Lloyd CW (1994) Increased cell-cycle-dependent staining of plant cells by the antibody MPM-2 correlates with preprophase band formation. Plant J 5:279–284

    Article  CAS  Google Scholar 

  • Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic re-orientation of cortical microtubules from transverse to longitudinal, in living plant cells. Proc Natl Acad Sci USA 91:6050–6053

    Article  PubMed  CAS  Google Scholar 

  • Zandomeni K, Schopfer P (1993) Reorientation of microtubules at the outer epidermal wall of maize coleoptiles by phytochrome, blue-light photoreceptor and auxin. Protoplasma 173:103–112

    Article  Google Scholar 

  • Zandomeni K, Schopfer P (1994) Mechanosensory microtubule reorientation in the epidermis of maize coleoptiles subjected to bending stress. Protoplasma 182:96–101

    Article  PubMed  CAS  Google Scholar 

  • Ziegenspeck H (1948) Die Bedeutung des Feinbaus der pflanzlichen Zellwand für die physiologische Anatomie. Mikroskopie 3:72–85

    PubMed  CAS  Google Scholar 

  • Zimmermann W (1965) Die Telomtheorie. Gustav Fischer, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nick .

Editor information

Peter Nick

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nick, P. (2007). Control of Cell Axis. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_143

Download citation

Publish with us

Policies and ethics