Skip to main content

Division Plane Orientation in Plant Cells

  • Chapter
  • First Online:
Book cover Cell Division Control in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 9))

Abstract

This review discusses current knowledge on division plane determination in plant cells and how divisionwithin this plane is executed during cytokinesis. Plants cells are unusual among eukaryotes in that theirplanes of division are established prior to the onset of mitosis. Factors that contribute to the initialselection of the division plane include extra-cellular signals, cell geometry and polarity, and nuclearposition. During the G2 phase of the cell cycle, the formation of the preprophase band (PPB), a corticalassembly of microtubules and microfilaments, signals the future location of the division plane. Factorsimportant for PPB formation and maturation include the actin cytoskeleton, changes in microtubule dynamics,and protein dephosphorylation. Prior to its disassembly at prometaphase, the PPB functions in more thanone way to determine subsequent placement of the new cell wall. First, the PPB influences the initial orientationof the spindle, which facilitates subsequent cell wall formation within the division plane. Second, thePPB is thought to direct the formation of a cortical division site that persists after PPB breakdownand interacts during cytokinesis with the expanding phragmoplast, a cytoskeletal assembly that directsthe deposition of the partitioning cell wall. Both negative and positive cortical markers are implicatedin maintaining the memory of the former PPB site throughout mitosis and cytokinesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayaydin F, Vissi E, Meszaros T, Miskolczi P, Kovacs I, Feher A, Dombradi V, Erdodi F, Gergely P, Dudits D (2000) Inhibition of serine/threonine-specific protein phosphatases causes premature activation of cdc2MsF kinase at G2/M transition and early mitotic microtubule organisation in alfalfa. Plant J 23:85–96

    PubMed  CAS  Google Scholar 

  • Baluska F, Jasik J, Edelmann HG, Salajová T, Volkmann D (2001) Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent. Dev Biol 231:113–124

    PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE (2001) The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma 215:35–49

    PubMed  CAS  Google Scholar 

  • Burgess J, Northcote DH (1968) The relationship between the endoplasmic reticulum and microtubular aggregation and disaggregation. Planta 80:1–14

    Google Scholar 

  • Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14:833–845

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chan J, Calder G, Fox S, Lloyd C (2005) Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17:1737–1748

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cleary AL (1995) F-actin redistributions at the division site in living Tradescantia stomatal complexes as revealed by microinjection of rhodamine-phalloidin. Protoplasma 185:152–165

    Google Scholar 

  • Cleary AL, Gunning BES, Wasteneys GO, Hepler PK (1992) Microtubule and F-actin dynamics at the division site in living Tradescantia stamen hair cells. J Cell Sci 103:977–988

    CAS  Google Scholar 

  • Cleary AL, Smith LG (1998) The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. Plant Cell 10:1875–1888

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cutler SR, Ehrhardt DW (2002) Polarized cytokinesis in vacuolate cells of Arabidopsis. Proc Natl Acad Sci USA 99:2812–2817

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dhonukshe P, Gadella TWJ (2003) Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15:597–611

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dhonukshe P, Kleine-Vehn J, Friml J (2005a) Cell polarity, auxin transport, and cytoskeleton-mediated division planes: who comes first? Protoplasma 226:67–73

    PubMed  CAS  Google Scholar 

  • Dhonukshe P, Mathur J, Hulskamp M, Gadella TWJ (2005b) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11

    PubMed  PubMed Central  Google Scholar 

  • Dixit R, Chang E, Cyr R (2006) Establishment of polarity during organization of the acentrosomal plant cortical microtubule array. Mol Biol Cell 17:1298–1305

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dixit R, Cyr R (2002a) Golgi secretion is not required for marking the preprophase band site in cultured tobacco cells. Plant J 29:99–108

    PubMed  CAS  Google Scholar 

  • Dixit R, Cyr RJ (2002b) Spatio-temporal relationship between nuclear-envelope breakdown and preprophase band disappearance in cultured tobacco cells. Protoplasma 219:116–121

    PubMed  CAS  Google Scholar 

  • Eleftheriou EP (1996) Developmental features of protophloem sieve elements in roots of wheat (Triticum aestivum L.). Protoplasma 193:204–212

    Google Scholar 

  • Flanders DJ, Rawlins DJ, Shaw PJ, Lloyd CW (1990) Nucleus-associated microtubules help determine the division plane of plant epidermal cells: avoidance of four-way junctions and the role of cell geometry. J Cell Biol 110:1111–1122

    PubMed  CAS  Google Scholar 

  • Galatis B, Apostolakos P, Katsaros C (1984) Experimental studies on the function of the cortical cytoplasmic zone of the preprophase microtubule band. Protoplasma 122:11–26

    Google Scholar 

  • Galatis B, Mitrakos K (1979) On the differential divisions and preprophase microtubule bands involved in the development of stomata of Vigna sinensis L. J Cell Sci 37:11–37

    PubMed  CAS  Google Scholar 

  • Galatis P, Apostolakos P, Katsaros C, Loukari H (1982) Pre-prophase microtubule band and local wall thickening in guard cell mother cells of some Leguiminosae. Ann Bot 50:779–791

    Google Scholar 

  • Gallagher K, Smith LG (1999) discordia mutations specifically misorient asymmetric cell divisions during development of the maize leaf epidermis. Development 126:4623–4633

    PubMed  CAS  Google Scholar 

  • Goodbody KC, Lloyd CW (1990) Actin filaments line up across Tradescantia epidermal cells, anticipating wound-induced division planes. Protoplasma 157:92–101

    Google Scholar 

  • Goodbody KC, Venverloo CJ, Lloyd CW (1991) Laser microsurgery demonstrates that cytoplasmic strands anchoring the nucleus across the vacoule of premitotic plant cells are under tension. Implications for division plane alignment. Development 113:931–939

    Google Scholar 

  • Granger CL, Cyr RJ (2000) Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD. Planta 210:502–509

    PubMed  CAS  Google Scholar 

  • Granger CL, Cyr RJ (2001) Use of abnormal preprophase bands to decipher division plane determination. J Cell Sci 114:599–607

    PubMed  CAS  Google Scholar 

  • Gunning BES, Hardham AR, Hughes JE (1978a) Pre-prophase bands of microtubules in all categories of formative and proliferative cell division in Azolla roots. Planta 143:145–160

    PubMed  CAS  Google Scholar 

  • Gunning BES, Hardham AR, Hughes JE (1978b) Evidence for initiation of microtubules in discrete regions of the cell cortex in Azolla root tip cells, and a hypothesis on the development of cortical arrays of microtubules. Planta 134:161–179

    Google Scholar 

  • Gunning BES, Wick SM (1985) Preprophase bands, phragmoplasts, and spatial control of cytokinesis. J Cell Sci Suppl 2:157–179

    PubMed  CAS  Google Scholar 

  • Gunning BES (1982) The cytokinetic apparatus: Its development and apatial regulation. In: Lloyd CW (ed) The Cytoskeleton in Plant Growth and Development. Academic Press, London, pp 229–292

    Google Scholar 

  • Hahne G, Hoffman F (1984) The effect of laser microsurgery on cytoplamic strands and cytoplasmic streaming in isolated plant protoplasts. Eur J Cell Biol 33:175–179

    PubMed  CAS  Google Scholar 

  • Hofmeister W (1863) Zusätze und Berichtigungen zu den 1851 veröffentlichten Untersuchungen der Entwicklung höherer Kryptogamen. Jahrb Wiss Bot 3:259–293

    Google Scholar 

  • Hoshino H, Yoneda A, Kumagai F, Hasezawa S (2003) Roles of actin-depleted zone and preprophase band in determining the division site of higher-plant cells, a tobacco BY-2 cell line expressing GFP-tubulin. Protoplasma 222:157–165

    PubMed  CAS  Google Scholar 

  • Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353:417–439

    PubMed  PubMed Central  CAS  Google Scholar 

  • Katsuta J, Hashiguchi Y, Shibaoka H (1990) The role of the cytoskeleton in positioning of the nucleus in premitotic tobacco BY-2 cells. J Cell Sci 95:413–422

    Google Scholar 

  • Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140:102–114

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kennard JL, Cleary AL (1997) Pre-mitotic nuclear migration in subsidiary mother cells of Tradescantia occurs in G1 of the cell cycle and requires F-actin. Cell Motil Cytoskeleton 36:55–67

    PubMed  CAS  Google Scholar 

  • Kumagai F, Hasezawa S (2001) Dynamic organization of microtubules and microfilaments during cell cycle progression in higher plant cells. Plant Biol 3:4–16

    Google Scholar 

  • Kutsuna N, Hasezawa S (2002) Dynamic organization of vacuolar and microtubule structures during cell cycle progression in synchronized tobacco BY-2 cells. Plant Cell Physiol 43:965–973

    PubMed  CAS  Google Scholar 

  • Liu B, Palevitz BA (1992) Organization of cortical microfilaments in dividing root cells. Cell Motil Cytoskeleton 23:252–264

    Google Scholar 

  • Lloyd CW (1991) How does the cytoskeleton read the laws of geometry in aligning the division plane of plant cells? Dev Suppl 1:55–65

    Google Scholar 

  • Lloyd CW, Traas JA (1988) The role of F-actin in determining the division plane of carrot suspension cells. Drug studies. Development 102:211–221

    CAS  Google Scholar 

  • Lu B, Roegiers F, Jan LY, Jan YN (2001) Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409:522–525

    PubMed  CAS  Google Scholar 

  • Lynch TM, Lintilhac PM (1997) Mechanical signals in plant development: a new method for single cell studies. Dev Biol 181:246–256

    PubMed  CAS  Google Scholar 

  • Marcus AI, Dixit R, Cyr RJ (2005) Narrowing of the preprophase microtubule band is not required for cell division plane determination in cultured plant cells. Protoplasma 226:169–174

    PubMed  CAS  Google Scholar 

  • Marcus AI, Li W, Ma H, Cyr RJ (2003) A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Mol Biol Cell 14:1717–1726

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mayer U, Büttner G, Jürgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117:149–162

    Google Scholar 

  • McCartney BM, McEwen DG, Grevengoed E, Maddox P, Bejsovec A, Peifer M (2001) Drosophila APC2 and Armadillo participate in tethering mitotic spindles to cortical actin. Nat Cell Biol 3:933–938

    PubMed  CAS  Google Scholar 

  • McClinton RS, Sung ZR (1997) Organization of cortical microtubules at the plasma membrane in Arabidopsis. Planta 201:252–260

    PubMed  CAS  Google Scholar 

  • McCurdy DW, Gunning BES (1990) Reorganization of cortical actin microfilaments and microtubules at preprophase and mitosis in wheat root-tip cells: A double label immunofluorescence study. Cell Motil Cytoskeleton 15:76–87

    Google Scholar 

  • Mineyuki Y (1999) The preprophase band of microtubules: Its function as a cytokinetic apparatus in higher plants. Int Rev Cytol 187:1–49

    Google Scholar 

  • Mineyuki Y, Furuya M (1986) Involvement of colchicine-sensitive cytoplasmic element in premitotic nuclear positioning of Adiantum protonemata. Protoplasma 130:83–90

    Google Scholar 

  • Mineyuki Y, Marc J, Palevitz BA (1991) Relationship between the preprophase band, nucleus, and spindle in dividing Allium cotyledon cells. J Plant Physiol 138:640–649

    Google Scholar 

  • Mineyuki Y, Palevitz BA (1990) Relationship between preprophase band organization, F-actin, and the division site in Allium. J Cell Sci 97:283–295

    CAS  Google Scholar 

  • Mineyuki Y, Wick SM, Gunning BES (1988) Preprophase bands of microtubules and the cell cycle: Kinetics and experimental uncoupling of their formation from the nuclear cycle in onion root-tip cells. Planta 174:518–526

    PubMed  CAS  Google Scholar 

  • Miyake T, Hasezawa S, Nagata T (1997) Role of cytoskeletal components in the migration of nuclei during the cell cycle transistion from G1 phase to S phase of tobacco BY-2 cells. J Plant Physiol 150:528–536

    CAS  Google Scholar 

  • Molchan TM, Valster AH, Hepler PK (2002) Actomyosin promotes cell plate alignment and late lateral expansion in Tradescantia stamen hair cells. Planta 214:683–693

    PubMed  CAS  Google Scholar 

  • Müller S, Han S, Smith LG (2006) Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr Biol 16:888–894

    PubMed  Google Scholar 

  • Murata T, Wada M (1991) Effects of centrifugation on preprophase-band formation in Adiantum protonemata. Planta 183:391–398

    PubMed  CAS  Google Scholar 

  • Nebenführ A, Frohlick JA, Staehelin LA (2000) Redistribution of Golgi stacks and other organelles during mitosis and cytokinesis in plant cells. Plant Physiol 124:135–151

    PubMed  PubMed Central  Google Scholar 

  • Nogami A, Suzaki T, Shigenaka Y, Nagahama Y, Mineyuki Y (1996) Effects of cycloheximide on preprophase bands and prophase spindles in onion (Allium cepa L.) root tip cells. Protoplasma 192:109–121

    CAS  Google Scholar 

  • Ôta T (1961) The role of cytoplasm in cytokinesis of plant cells. Cytologia 26:428–447

    Google Scholar 

  • Palevitz BA (1986) Division plane determination in guard mother cells of Alluim: Video time-lapse analysis of nuclear movements and phragmoplast rotation in the cortex. Dev Biol 177:644–654

    Google Scholar 

  • Palevitz BA (1987) Actin in the preprophase band of Allium cepa. J Cell Biol 104:1515–1519

    PubMed  CAS  Google Scholar 

  • Palevitz BA, Hepler PK (1974a) The control of the plane of division during stomatal differentiation in Allium. I. Spindle Reorientation. Chromosoma 46:297–326

    Google Scholar 

  • Palevitz BA, Hepler PK (1974b) The control of the plane of division during stomatal differentiation in Allium II. Drug Studies. Chromosoma 46:327–341

    CAS  Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1995) The effect of taxol on Triticum preprophase root cells: preprophase microtubule band organization seems to depend on new microtubule assembly. Protoplasma 186:72–78

    CAS  Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (2006) Cytoskeletal asymmetry in Zea mays subsidiary cell mother cells: a monopolar prophase microtubule half-spindle anchors the nucleus to its polar position. Cell Motil Cytoskeleton 63:696–709

    PubMed  CAS  Google Scholar 

  • Panteris E, Apostolakos P, Quader H, Galatis B (2004) A cortical cytoplasmic ring predicts the division plane in vacuolated cells of Coleus: the role of actomyosin and microtubules in the establishment and function of the division site. New Phytol 163:271–286

    PubMed  Google Scholar 

  • Petrásek J, Elckner M, Morris DA, Zazímalová E (2002) Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells. Planta 216:302–308

    PubMed  Google Scholar 

  • Pickett-Heaps JD (1969) Preprophase microtubules and stomatal differentation; Some effects of centrifugation on symmetrical and asymmetrical cell division. J Ultrastruct Res 27:24–44

    PubMed  Google Scholar 

  • Pickett-Heaps JD, Northcote DH (1966a) Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J Cell Sci 1:109–120

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD, Northcote DH (1966b) Cell division in the formation of the stomatal complex of the young leaves of wheat. J Cell Sci 1:121–128

    PubMed  CAS  Google Scholar 

  • Sano T, Higaki T, Oda Y, Hayashi T, Hasezawa S (2005) Appearance of actin microfilament twin peaks in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin. Plant J 44:595–605

    PubMed  CAS  Google Scholar 

  • Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300:1715–1718

    PubMed  CAS  Google Scholar 

  • Shevell DE, Leu WM, Gillmor CS, Xia G, Feldmann KA, Chua NH (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77:1051–1062

    PubMed  CAS  Google Scholar 

  • Sinnott EW, Bloch R (1940) Cytoplasmic behavior during division of vacuolate plant cells. Proc Natl Acad Sci USA 26:223–227

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sinnott EW, Bloch R (1941) The relative position of cell walls in developing plant tissues. Am J Bot 28:607–617

    Google Scholar 

  • Smertenko AP, Chang H-Y, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser M-T, Hussey PJ (2004) The Arabidopsis microtubule associated protein AtMAP65-1: Molecular analysis of its microtubule bundling activity. Plant Cell 16:2035–2047

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smith LG (2001) Plant cell division: building walls in the right places. Nat Rev Mol Cell Biol 2:33–39

    PubMed  CAS  Google Scholar 

  • Smith LG, Gerttula SM, Han S, Levy J (2001) TANGLED1: A microtubule binding protein required for the spatial control of cytokinesis in maize. J Cell Biol 152:231–236

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smith LG, Hake S, Sylvester AW (1996) The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122:481–489

    PubMed  CAS  Google Scholar 

  • Tian GW, Smith D, Gluck S, Baskin TI (2004) Higher plant cortical microtubule array analyzed in vitro in the presence of the cell wall. Cell Motil Cytoskeleton 57:26–36

    PubMed  CAS  Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375:676–677

    CAS  Google Scholar 

  • Traas JA, Doonan JH, Rawlins DJ, Shaw PJ, Watts J, Lloyd CW (1987) An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol 105:387–395

    PubMed  CAS  Google Scholar 

  • Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4:711–714

    PubMed  PubMed Central  CAS  Google Scholar 

  • Valster AH, Hepler PK (1997) Caffeine inhibition of cytokinesis: effect on the phragmoplast cytoskeleton in living Tradescantia stamen hair cells. Protoplasma 196:155–166

    CAS  Google Scholar 

  • Van Damme D, Bouget FY, Van Poucke K, Inzé D, Geelen D (2004) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–398

    PubMed  Google Scholar 

  • Vanstraelen M, Torres Acosta JA, De Veylder L, Inzé D, Geelen D (2004) A plant-specific subclass of C-terminal kinesins contains a conserved A-type cyclin-dependent kinase site implicated in folding and dimerization. Plant Physiol 135:1417–1429

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vanstraelen M, Van Damme D, De Rycke R, Mylle E, Inze D, Geelen D (2006) Cell cycle-dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells. Curr Biol 16:308–314

    PubMed  CAS  Google Scholar 

  • Venverloo CJ, Libbenga KR (1987) Regulation of the plane of cell division in vacuolated cells I. The function of nuclear positioning and phragmosome formation. J Plant Physiol 131:267–284

    Google Scholar 

  • Vos JW, Dogterom M, Emons AMC (2004) Microtubules become more dynamic but not shorter during preprophase band formation: a possible search-and-capture mechanism for microtubule translocation. Cell Motil Cytoskeleton 57:246–258

    PubMed  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    PubMed  CAS  Google Scholar 

  • Wick SM, Duniec J (1983) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulin. J Cell Biol 97:235–243

    PubMed  CAS  Google Scholar 

  • Wick SM, Duniec J (1984) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. II. Transition between the pre-prophase band and the mitotic spindle. Protoplasma 122:45–55

    Google Scholar 

  • Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550

    PubMed  CAS  Google Scholar 

  • Yoneda A, Akatsuka M, Hoshino H, Kumagai F, Hasezawa S (2005) Decision of spindle poles and division plane by double preprophase bands in a BY-2 cell line expressing GFP-tubulin. Plant Cell Physiol 46:531–538

    PubMed  CAS  Google Scholar 

  • Zachariadis M, Quader H, Galatis B, Apostolakos P (2001) Endoplasmic reticulum preprophase band in dividing root-tip cells of Pinus brutia. Planta 213:824–827

    PubMed  CAS  Google Scholar 

  • Zachariadis M, Quader H, Galatis B, Apostolakos P (2003) Organization of the endoplasmic reticulum in dividing cells of the gymnosperms Pinus brutia and Pinus nigra, and of the pterophyte Asplenium nidus. Cell Biol Int 27:31–40

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie G. Smith .

Editor information

Desh Pal S. Verma Zonglie Hong

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wright, A.J., Smith, L.G. (2007). Division Plane Orientation in Plant Cells. In: Verma, D.P.S., Hong, Z. (eds) Cell Division Control in Plants. Plant Cell Monographs, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_121

Download citation

Publish with us

Policies and ethics