Skip to main content

Peptidomimetics via Iminium Ion Chemistry on Solid Phase: Single, Fused, and Bridged Heterocycles

  • Chapter
  • First Online:
Peptidomimetics II

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 49))

Abstract

Iminium ion chemistry represents a versatile transformation capable of introducing structurally diverse constraints into peptide backbones. The compatibility of iminium ion chemistry with traditional solid-phase peptide synthesis methods enables the introduction of constraints without requiring solution-phase synthesis. This chapter describes the introduction of constrained molecular scaffolds composed of single, fused, and bridged heterocycles into peptide backbones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daich A, Ghinet A, Rigo B (2014) Compr Org Synth II 2:682

    Article  CAS  Google Scholar 

  2. Maryanoff BE, Zhang HC, Cohen JH, Turchi IJ, Maryanoff CA (2004) Chem Rev 104:1431

    Article  CAS  Google Scholar 

  3. Royer J, Bonin M, Micouin L (2004) Chem Rev 104:2311

    Article  CAS  Google Scholar 

  4. Yazici A, Pyne SG (2009) Synthesis 339

    Google Scholar 

  5. Yazici A, Pyne SG (2009) Synthesis 513

    Google Scholar 

  6. Overman LE (1992) Acc Chem Res 25:352

    Article  CAS  Google Scholar 

  7. Remuson R, Gelas-Mialhe Y (2008) Mini Rev Med Chem 5:193

    Article  CAS  Google Scholar 

  8. Speckamp WN, Moolenaar MJ (2000) Tetrahedron 56:3817

    Article  CAS  Google Scholar 

  9. Kohn WD, Zhang L (2001) Tetrahedron Lett 42:4453

    Article  CAS  Google Scholar 

  10. Min BJ, Gu X, Yamamoto T, Petrov RR, Qu H, Lee YS, Hruby VJ (2008) Tetrahedron Lett 49:2316

    Article  CAS  Google Scholar 

  11. Vojkovsky T, Weichsel A, Patek M (1998) J Org Chem 63:3162

    Article  CAS  Google Scholar 

  12. Paris M, Heitz A, Guerlavais V, Cristau M, Fehrentz JA, Martinez J (1998) Tetrahedron Lett 39:7287

    Article  CAS  Google Scholar 

  13. Le Quement ST, Nielsen TE, Meldal M (2007) J Comb Chem 9:1060

    Article  Google Scholar 

  14. Nielsen TE, Meldal M (2004) J Org Chem 69:3765

    Article  CAS  Google Scholar 

  15. Nielsen TE, Le Quement S, Meldal M (2005) Org Lett 7:3601

    Article  CAS  Google Scholar 

  16. Lewis JG, Bartlett PA (2003) J Comb Chem 5:278

    Article  CAS  Google Scholar 

  17. Eguchi E, Kahn M (2002) Mini Rev Med Chem 2:447

    Article  CAS  Google Scholar 

  18. Eguchi M, Lee MS, Nakanishi H, Stasiak M, Lovell S, Kahn M (1999) J Am Chem Soc 121:12204

    Article  CAS  Google Scholar 

  19. Eguchi M, Lee MS, Stasiak M, Kahn M (2001) Tetrahedron Lett 42:1237

    Article  CAS  Google Scholar 

  20. Lee SC, Park SB (2007) J Org Chem 9:828

    CAS  Google Scholar 

  21. Vankova B, Brulikova L, Wu B, Krchnak V (2012) Eur J Org Chem 2012:5075

    Article  CAS  Google Scholar 

  22. Kim JH, Lee YS, Kim CS (1998) Heterocycles 48:2279

    Article  CAS  Google Scholar 

  23. Cosford NDP, Vamos MD (2014) Patent WO2014085489A1

    Google Scholar 

  24. Cankarova N, Krchnak V (2012) J Org Chem 77:5687

    Article  CAS  Google Scholar 

  25. Dinsmore CJ, Beshore DC (2002) Org Prep Proc Int 34:367

    Article  CAS  Google Scholar 

  26. DiMaio J, Belleau B (1989) J Chem Soc Perkin Trans I:1687

    Google Scholar 

  27. Horwell DC, Lewthwaite RA, Pritchard MC, Ratcliffe GS, Rubin JR (1998) Tetrahedron 54:4591

    Article  CAS  Google Scholar 

  28. Kitamura S, Fukushi H, Miyawaki T, Kawamura M, Konishi N, Terashita Z, Naka T (2001) J Med Chem 44:2438

    Article  CAS  Google Scholar 

  29. Peng H, Carrico D, Thai V, Blaskovich M, Bucher C, Pusateri EE, Sebti SM, Hamilton AD (2006) Org Biomol Chem 4:1768

    Article  CAS  Google Scholar 

  30. Nielsen TE, Meldal M (2005) J Comb Chem 7:599

    Article  CAS  Google Scholar 

  31. Sun H, Martin C, Kesselring D, Keller R, Moeller KD (2006) J Am Chem Soc 128:13761

    Article  CAS  Google Scholar 

  32. Sun H, Moeller KD (2002) Org Lett 4:1547

    Article  CAS  Google Scholar 

  33. Sun H, Moeller KD (2003) Org Lett 5:3189

    Article  CAS  Google Scholar 

  34. Fukuyama T, Jow C-K, Cheung M (1995) Tetrahedron Lett 36:6373

    Article  CAS  Google Scholar 

  35. Airiau E, Spangenberg T, Girard N, Schoenfelder A, Salvadori J, Taddei M, Mann A (2008) Chem Eur J 14:10938

    Article  CAS  Google Scholar 

  36. Ciofi L, Morvillo M, Sladojevich F, Guarna A, Trabocchi A (2010) Tetrahedron Lett 51:6282

    Article  CAS  Google Scholar 

  37. Wirt U, Schepmann D, Wuensch B (2007) Eur J Org Chem 462

    Google Scholar 

  38. La-Venia A, Lemrova B, Krchnák V (2013) ACS Comb Sci 15:59

    Article  CAS  Google Scholar 

  39. La-Venia A, Dolensky B, Krchnák V (2013) ACS Comb Sci 15:162

    Article  CAS  Google Scholar 

  40. Ventosa Andrés P, Hradilova L, Krchnak V (2014) ACS Comb Sci 16:359

    Article  Google Scholar 

  41. Ventosa Andrés P, La-Venia A, Ripoll CAB, Hradilova L, Krchnak V (2015) Chem Eur J 21:13112

    Google Scholar 

  42. La-Venia A, Ventosa-Andrés P, Hradilova L, Krchnák V (2014) J Org Chem 79:10378

    Article  CAS  Google Scholar 

  43. Stockigt J, Antonchick AP, Wu F, Waldmann H (2011) Angew Chem Int Ed 50:8538

    Article  CAS  Google Scholar 

  44. Ventosa Andrés P, La-Venia A, Ripoll CAB, Krchnak V (2015) Tetrahedron Lett 56:5424

    Google Scholar 

  45. Quirante J, Vila X, Bonjoch J, Kozikowski AP, Johnson KM (2004) Bioorg Med Chem 12:1383

    Article  CAS  Google Scholar 

  46. Schütznerová E, Oliver AG, Zajícek J, Krchnák V (2013) Eur J Org Chem 2013:3158

    Article  Google Scholar 

  47. Eguchi M, Huber V, Lee MS, Mathew J, Nakanishi H, Urban J (2003) Patent US20030236245 A1

    Google Scholar 

  48. Lee SC, Park SB (2005) J Comb Chem 8:50

    Article  Google Scholar 

  49. Orain D, Canova R, Dattilo M, Kloppner E, Denay R, Koch G, Giger R (2002) Synlett 1443

    Google Scholar 

  50. Chou YL, Morrissey MM, Mohan R (1998) Tetrahedron Lett 39:757

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Department of Chemistry and Biochemistry, University of Notre Dame as well as the projects P207/12/0473 from Czech Science Foundation (GACR) and CZ.1.07/2.3.00/30.0060 and 1.07/2.3.00/30.0004 from the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Krchňák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

La-Venia, A., Ventosa-Andrés, P., Krchňák, V. (2015). Peptidomimetics via Iminium Ion Chemistry on Solid Phase: Single, Fused, and Bridged Heterocycles. In: Lubell, W. (eds) Peptidomimetics II. Topics in Heterocyclic Chemistry, vol 49. Springer, Cham. https://doi.org/10.1007/7081_2015_194

Download citation

Publish with us

Policies and ethics