Skip to main content

[2+2], [3+2] and [2+2+2] Cycloaddition Reactions of Indole Derivatives

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 26))

Abstract

A review with 102 references on [2+2], [3+2] and [2+2+2] cycloaddition reactions involving the indole nucleus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Sa Alves FR, Barreiro EJ et al (2009) From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev Med Chem 9:782–793

    Article  Google Scholar 

  2. Mancini I, Guella G et al (2008) Synthesis of marine natural products with antimalarial activity. Mini Rev Med Chem 8:1265–1284

    Article  CAS  Google Scholar 

  3. Li S-M (2009) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymic synthesis. Nat Prod Rep 27:57–78

    Article  Google Scholar 

  4. Lodyga-Chruscinska E, Turek M (2009) Compounds containing indole ring – the future of medicine. PharmaChem 8:6–8

    CAS  Google Scholar 

  5. Sarkar FH, Li Y (2009) Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat Rev 35:597–607

    Article  CAS  Google Scholar 

  6. Osorio EJ, Robledo SM et al (2008) Alkaloids with antiprotozoal activity. Alkaloids Chem Biol 66:113–190

    Article  CAS  Google Scholar 

  7. Sottomayor M, Ros Barcelo A (2006) The Vinca alkaloids: from biosynthesis and accumulation in plant cells, to uptake, activity and metabolism in animal cells. Stud Nat Prod Chem 33:813–857

    Article  CAS  Google Scholar 

  8. Gupta L, Talwar A et al (2007) Bis and tris indole alkaloids from marine organisms: new leads for drug discovery. Curr Med Chem 14:1789–1803

    Article  CAS  Google Scholar 

  9. Sanchez C, Mendez C et al (2006) Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Nat Prod Rep 23:1007–1045

    Article  CAS  Google Scholar 

  10. Gul W, Hamann MT (2005) Indole alkaloid marine natural products: an established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci 78:442–453

    Article  CAS  Google Scholar 

  11. Weedon A (1997) The photochemistry of indoles. Adv Photochem 22:229–277

    Article  CAS  Google Scholar 

  12. Bronner SM, Bahnck KB et al (2009) Indolynes as electrophilic indole surrogates: fundamental reactivity and synthetic applications. Org Lett 11:1007–1010

    Article  CAS  Google Scholar 

  13. Himeshima Y, Sonoda T, Kobayashi H (1983) Fluoride-induced 1,2-elimination of O-trimethylsilylphenyl triflate to benzyne under mild conditions. Chem Lett 12:1211–1214

    Article  Google Scholar 

  14. Ikeda M, Ohno K et al (1982) Synthesis of 1H-1-benzazepines by thermolysis of 2a,7b-dihydro-3H-cyclobut[b]indoles. J Chem Soc Perkin Trans 1:741–748

    Google Scholar 

  15. Ikeda M, Ohno K et al (1980) Synthesis and some properties of 1H-1-benzazepines. Tetrahedron Lett 21:3403–3406

    Article  CAS  Google Scholar 

  16. Ikeda M, Ohno K et al (1984) Regio- and stereochemical aspects of [2+2] photocycloaddition between 1-benzoylindoles and olefins. J Chem Soc Perkin Trans 1:405–412

    Google Scholar 

  17. Hastings DJ, Weedon AC (1991) Stereochemical studies of the photochemical cycloaddition reaction of alkenes with N-benzoylindole and N-carboethoxyindole: evidence for biradical intermediacy. Can J Chem 69:1171–1181

    Article  CAS  Google Scholar 

  18. Andrew D, Hastings DJ et al (1992) Triplet 1, 4-biradical intermediates in the photocycloaddition reactions of enones and N-acylindoles with alkenes. Pure Appl Chem 64:1327–1334

    Article  CAS  Google Scholar 

  19. Hastings DJ, Weedon AC (1991) The origin of the regioselectivity in the 2+2 photochemical cycloaddition reactions of N-benzoylindole with alkenes: trapping of 1,4-biradical intermediates with hydrogen selenide. Tetrahedron Lett 32:4107–4110

    Article  CAS  Google Scholar 

  20. Hastings DJ, Weedon AC (1991) Structures and lifetimes of 1,4-biradical intermediates in the photochemical cycloaddition reactions of N-benzoylindole with alkenes. J Org Chem 56:6326–6331

    Article  CAS  Google Scholar 

  21. Oldroyd DL, Weedon AC (1991) Solvent- and wavelength-dependent photochemistry of N-benzoylindole and N-ethoxycarbonylindole. J Photochem Photobiol A 57:207–216

    Article  CAS  Google Scholar 

  22. Weedon AC, Zhang B (1992) Removable groups for activation of indole photochemistry. Synthesis:95–100

    Google Scholar 

  23. Ikeda M, Uno T et al (1980) Beckmann fission of some fused cyclobutanones: a new entry into indole-2-acetonitriles and benzo[b]thiophene-2-acetonitrile. Synth Commun 10:437–449

    Article  CAS  Google Scholar 

  24. Oldroyd DL, Payne NC et al (1993) Photochemical dimerization reactions of N-acylindoles. Tetrahedron Lett 34:1087–1090

    Article  CAS  Google Scholar 

  25. Ito Y, Fujita H (2000) Unusual [2+2] photocycloaddition between tryptamine and 3-nitrocinnamic acid in the solid state. Chem Lett:288–289

    Google Scholar 

  26. Winkler JD, Scott RD et al (1990) Asymmetric induction in the vinylogous amide photocycloaddition reaction. A formal synthesis of vindorosine. J Am Chem Soc 112:8971–8975

    Article  CAS  Google Scholar 

  27. Ando M, Buechi G et al (1975) Total synthesis of (+−)-vindoline. J Am Chem Soc 97:6880–6881

    Article  CAS  Google Scholar 

  28. Buchi G, Matsumoto KE et al (1971) Total synthesis of (+−)-vindorosine. J Am Chem Soc 93:3299–3301

    Article  CAS  Google Scholar 

  29. Oldroyd DL, Weedon AC (1992) Intramolecular photochemical cycloadditions of N-alkenyloxycarbonylindoles and N-alkenoylindoles. J Chem Soc Chem Commun:1491–1492

    Google Scholar 

  30. White JD, Ihle DC (2006) Tandem photocycloaddition-retro-mannich fragmentation of enaminones. A route to spiropyrrolines and the tetracyclic core of koumine. Org Lett 8:1081–1084

    Article  CAS  Google Scholar 

  31. Acheson RM, Elmore NF (1978) Reactions of acetylenecarboxylic esters with nitrogen-containing heterocycles. Adv Heterocycl Chem 23:263–482

    Article  CAS  Google Scholar 

  32. Davis PD, Neckers DC (1980) Photocycloaddition of dimethyl acetylenedicarboxylate to activated indoles. J Org Chem 45:456–462

    Article  CAS  Google Scholar 

  33. Rodrigues JAR, Verardo LI (1983) Cycloaddition of dimethyl acetylenedicarboxylate to indoles. Isolation of a [2+2] adduct. J Heterocycl Chem 20:1263–1265

    CAS  Google Scholar 

  34. Machida M, Takechi H et al (1982) Photochemistry of the phthalimide system. 32. Photoreaction of N-(w-indol-3-ylalkyl)phthalimides: intramolecular oxetane formation of the aromatic imide system. Tetrahedron Lett 23:4981–4982

    Article  CAS  Google Scholar 

  35. Takechi H, Machida M et al (1988) Photochemistry of the phthalimide system. XLI. Intramolecular photoreactions of phthalimide-alkene systems. Oxetane formation of N-(w-indol-3-ylalkyl)phthalimides. Chem Pharm Bull 36:2853–2863

    Article  CAS  Google Scholar 

  36. Takechi H, Machida M et al (1994) Photochemistry of the phthalimide system XLIV. Intramolecular photoreactions of phthalimide-alkene systems. Macrocyclic synthesis through the remote Paterno–Buechi reaction of phthalimide with indole derivatives. Chem Pharm Bull 42:188–196

    Article  CAS  Google Scholar 

  37. Takechi H, Machida M et al (1985) Intermolecular photoaddition of N-methylphthalimide to indole derivatives: regio- and stereoselective formation of oxeto[2,3-b]indoles. Heterocycles 23:1373–1376

    Article  CAS  Google Scholar 

  38. Takechi H, Machida M et al (1988) Photochemistry of the phthalimide system. XLII. Intermolecular photoreactions of phthalimide-alkene systems. Regio- and stereoselective oxetane formation from N-methylphthalimide and N-acetylindole derivatives. Chem Pharm Bull 36:3770–3779

    Article  CAS  Google Scholar 

  39. Meng J-B, Wang W-G et al (1993) A multistep photoreaction of aromatic aldehydes with heteroaromatics in the solid state. J Photochem Photobiol A 74:43–49

    Article  CAS  Google Scholar 

  40. Gothelf KV (2002) Asymmetric metal-catalyzed 1,3-dipolar cycloaddition reactions. Cycloaddit React Org Synth:211–247

    Google Scholar 

  41. Harju K, Yli-Kauhaluoma J (2004) Progress in the synthesis of five-membered nitrogen-containing heterocycles via 1, 3-dipolar cycloaddition. Recent Res Dev Org Chem 8:111–157

    CAS  Google Scholar 

  42. Harju K, Yli-Kauhaluoma J (2005) Recent advances in 1,3-dipolar cycloaddition reactions on solid supports. Mol Divers 9:187–207

    Article  CAS  Google Scholar 

  43. Ohderaotoshi Y, Komatsu M (2005) Advances in 1,3-dipolar cycloaddition in heterocycle synthesis. Gendai Kagaku Zokan 43:34–50

    CAS  Google Scholar 

  44. Padwa A (2009) Domino reactions of rhodium(ii) carbenoids for alkaloid synthesis. Chem Soc Rev 38:3072–3081

    Article  CAS  Google Scholar 

  45. Savizky RM, Austin DJ (2005) Rhodium(II)-catalyzed 1,3-dipolar cycloaddition reactions. Mod Rhodium Catal Org React:433–454

    Google Scholar 

  46. Padwa A, Beall LS et al (2000) A one-pot bicycloannulation method for the synthesis of tetrahydroisoquinoline systems. J Org Chem 65:2684–2695

    Article  CAS  Google Scholar 

  47. Baruah B, Prajapati D et al (1997) Microwave induced 1,3-dipolar cycloaddition reactions of nitrones. Synth Commun 27:2563–2567

    Article  CAS  Google Scholar 

  48. Bashiardes G, Safir I et al (2007) An efficient one-pot synthesis of novel fused pyrroles and indoles by dipolar cycloaddition under microwave and conventional conditions. Synlett:1707–1710

    Google Scholar 

  49. Jones GB, Moody CJ (1988) Cyclopropapyrrolo[1,2-a]indoles. J Chem Soc Chem Commun:166–167

    Google Scholar 

  50. Jones GB, Moody CJ (1989) Structurally modified antitumor agents. Part 1. Synthesis of cyclopropapyrrolo[1,2-a]indoles related to mitosenes by intramolecular cycloaddition. J Chem Soc Perkin Trans 1:2449–2454

    Google Scholar 

  51. Molteni G (2004) Synthesis of the new pyrazolo[4,3-c]pyrrolizine skeleton via intramolecular nitrilimine cycloaddition. Heterocycles 63:1423–1428

    Article  CAS  Google Scholar 

  52. Padwa A, Hertzog DL et al (1994) Studies on the intramolecular cycloaddition reaction of mesoionics derived from the rhodium(II)-catalyzed cyclization of diazoimides. J Org Chem 59:1418–1427

    Article  CAS  Google Scholar 

  53. Coutouli-Argyropoulou E, Malamidou-Xenikaki E et al (1990) Formation of oxadiazolo[4,5-a]indolines via addition reactions of cycloalkano[b]indoles with nitrile oxides. Crystal structure of an adduct. J Heterocycl Chem 27:1185–1189

    Article  CAS  Google Scholar 

  54. Pirrung MC, Zhang J et al (1995) Reactions of a cyclic rhodium carbenoid with aromatic compounds and vinyl ethers. J Org Chem 60:2112–2124

    Article  CAS  Google Scholar 

  55. Pirrung MC, Zhang J et al (1991) Dipolar cycloaddition of cyclic rhodium carbenoids to aromatic heterocycles. J Org Chem 56:6269–6271

    Article  CAS  Google Scholar 

  56. Hertzog DL, Austin DJ et al (1992) Intramolecular cycloaddition of isomuenchnones derived from the rhodium(II) catalyzed cyclization of diazoimides. Tetrahedron Lett 33:4731–4734

    Article  CAS  Google Scholar 

  57. Padwa A, Hertzog DL et al (1994) Intramolecular cycloaddition of isomunchnone dipoles to heteroaromatic p-systems. J Org Chem 59:7072–7084

    Article  CAS  Google Scholar 

  58. Padwa A, Price AT (1995) Tandem cyclization–cycloaddition reaction of rhodium carbenoids as an approach to the aspidosperma alkaloids. J Org Chem 60:6258–6259

    Article  CAS  Google Scholar 

  59. Padwa A, Price AT (1998) Synthesis of the pentacyclic skeleton of the aspidosperma alkaloids using rhodium carbenoids as reactive intermediates. J Org Chem 63:556–565

    Article  CAS  Google Scholar 

  60. Mejia-Oneto JM, Padwa A (2004) Intramolecular [3+2]-cycloaddition reaction of push-pull dipoles across heteroaromatic p-systems. Org Lett 6:3241–3244

    Article  CAS  Google Scholar 

  61. Padwa A, Lynch SM et al (2005) Cycloaddition chemistry of 2-vinyl-substituted indoles and related heteroaromatic systems. J Org Chem 70:2206–2218

    Article  CAS  Google Scholar 

  62. Mejia-Oneto JM, Padwa A (2006) Application of the Rh(II) cyclization/cycloaddition cascade for the total synthesis of (+−)-aspidophytine. Org Lett 8:3275–3278

    Article  CAS  Google Scholar 

  63. Mejia-Oneto JM, Padwa A (2008) Total synthesis of the alkaloid (+−)-aspidophytine based on carbonyl ylide cycloaddition chemistry. Helv Chim Acta 91:285–302

    Article  CAS  Google Scholar 

  64. Hong X, France S et al (2006) Cycloaddition protocol for the assembly of the hexacyclic framework associated with the kopsifoline alkaloids. Org Lett 8:5141–5144

    Article  CAS  Google Scholar 

  65. Hong X, France S et al (2007) A dipolar cycloaddition approach toward the kopsifoline alkaloid framework. Tetrahedron 63:5962–5976

    Article  CAS  Google Scholar 

  66. Hong X, Mejia-Oneto JM et al (2007) Rhodium carbenoid induced cycloadditions of diazo keto imides across indolyl p-bonds. Synlett:775–779

    Google Scholar 

  67. Muthusamy S, Gunanathan C et al (2001) Novel regioselective synthesis of decahydrobenzocarbazoles using rhodium-generated carbonyl ylides with indoles. Tetrahedron Lett 42:523–526

    Article  CAS  Google Scholar 

  68. Muthusamy S, Gunanathan C et al (2004) Regioselective synthesis of mono- and bis-decahydrobenzocarbazoles via tandem reactions of a-diazo ketones. Tetrahedron 60:7885–7897

    Article  CAS  Google Scholar 

  69. Nambu H, Hikime M et al (2009) Asymmetric approach to the pentacyclic skeleton of aspidosperma alkaloids via enantioselective intramolecular 1,3-dipolar cycloaddition of carbonyl ylides catalyzed by chiral dirhodium(II) carboxylates. Tetrahedron Lett 50:3675–3678

    Article  CAS  Google Scholar 

  70. Schreiber S (2003) The small-molecule approach to biology. Chem Eng News 81:51–61

    Google Scholar 

  71. Strausberg RL, Schreiber SL (2003) From knowing to controlling: a path from genomics to drugs using small molecule probes. Science 300:294–295

    Article  CAS  Google Scholar 

  72. Oguri H, Schreiber SL (2005) Skeletal diversity via a folding pathway: synthesis of indole alkaloid-like skeletons. Org Lett 7:47–50

    Article  CAS  Google Scholar 

  73. Wilkie GD, Elliott GI et al (2002) Intramolecular Diels–Alder and tandem intramolecular Diels–Alder/1,3-dipolar cycloaddition reactions of 1,3,4-oxadiazoles. J Am Chem Soc 124:11292–11294

    Article  CAS  Google Scholar 

  74. Ishikawa H, Boger DL (2007) Total synthesis of (−)- and ent-(+)-4-desacetoxy-5-desethylvindoline. Heterocycles 72:95–102

    Article  CAS  Google Scholar 

  75. Ishikawa H, Elliott GI et al (2006) Total synthesis of (−)- and ent-(+)-vindoline and related alkaloids. J Am Chem Soc 128:10596–10612

    Article  CAS  Google Scholar 

  76. Yuan ZQ, Ishikawa H et al (2005) Total synthesis of natural (+)- and ent-(−)-4-desacetoxy-6, 7-dihydrovindorosine and natural and ent-minovine: oxadiazole tandem intramolecular Diels–Alder/1,3-dipolar cycloaddition reaction. Org Lett 7:741–744

    Article  CAS  Google Scholar 

  77. Choi Y, Ishikawa H et al (2005) Total synthesis of (−)- and ent-(+)-vindoline. Org Lett 7:4539–4542

    Article  CAS  Google Scholar 

  78. Elliott GI, Fuchs JR et al (2006) Intramolecular Diels–Alder/1,3-dipolar cycloaddition cascade of 1,3,4-oxadiazoles. J Am Chem Soc 128:10589–10595

    Article  CAS  Google Scholar 

  79. Dehaen WH, Hassner A (1991) Cycloadditions. 45. Annulation of heterocycles via intramolecular nitrile oxide-heterocycle cycloaddition reaction. J Org Chem 56:896–900

    Article  CAS  Google Scholar 

  80. Pelkey ET, Barden TC et al (1999) Nucleophilic addition reactions of 2-nitro-1-(phenylsulfonyl)indole. A new synthesis of 3-substituted-2-nitroindoles. Tetrahedron Lett 40:7615–7619

    Article  CAS  Google Scholar 

  81. Bruche L, Zecchi G (1983) Indoles as dipolarophiles towards 3,5-dichloro-2,4,6-trimethylbenzonitrile oxide. J Org Chem 48:2772–2773

    Article  CAS  Google Scholar 

  82. Malamidou-Xenikaki E, Coutouli-Argyropoulou E (1992) Synthesis of heterocyclic propellanes by 1,3-dipolar cycloaddition of 2,6-dichlorobenzonitrile oxide to 2,3-fused indoles. Catalytic hydrogenation of the cycloadducts. Liebigs Ann Chem:75–78

    Google Scholar 

  83. Fisera L, Mesko P et al (1983) 1,3-Dipolar cycloadditions of heterocyclic compounds. VIII. 1,3-Dipolar cycloadditions of C-benzoyl-N-phenylnitrone with indole derivatives. Collect Czech Chem Commun 48:1854–1863

    Article  CAS  Google Scholar 

  84. Daou B, Soufiaoui M (1989) New synthesis of arylpyrazolo[4,3-c]quinolines by 1,3-dipolar cycloaddition. Tetrahedron 45:3351–3361

    Article  CAS  Google Scholar 

  85. He P, Zhu S-Z (2005) Study on the reactions of fluoroalkanesulfonyl azides with indole derivatives. J Fluor Chem 126:825–830

    Article  CAS  Google Scholar 

  86. He P, Zhu S-Z (2005) Reactions of fluoroalkanesulfonyl azides with N-alkylindoles. J Fluor Chem 126:113–120

    Article  CAS  Google Scholar 

  87. de la Mora MA, Cuevas E et al (2001) Synthesis of tricyclic 2-aminoindoles by intramolecular 1,3-dipolar cycloaddition of 1-w-azidoalkylindoles. Tetrahedron Lett 42:5351–5353

    Article  Google Scholar 

  88. Zhang G, Zhang L (2008) Au-containing all-carbon 1,3-dipoles: generation and [3+2] cycloaddition reactions. J Am Chem Soc 130:12598–12599

    Article  CAS  Google Scholar 

  89. Venkatesh C, Singh PP et al (2006) Highly diastereoselective [3+2] cyclopenta[b]annulation of indoles with 2-arylcyclopropyl ketones and diesters. Eur J Org Chem:5378–5386

    Google Scholar 

  90. Gribble GW, Pelkey ET et al (2000) Regioselective 1,3-dipolar cycloaddition reactions of unsymmetrical munchnones (1,3-oxazolium-5-olates) with 2- and 3-nitroindoles. A new synthesis of pyrrolo[3, 4-b]indoles. Tetrahedron 56:10133–10140

    Article  CAS  Google Scholar 

  91. Gribble GW, Pelkey ET et al (1998) New syntheses of pyrrolo[3,4-b]indoles, benzo[b]furo[2,3-c]pyrroles, and benzo[b]thieno[2,3-c]pyrroles. Utilizing the reaction of muenchnones (1,3-oxazolium-5-olates) with nitro heterocycles. Synlett:1061–1062

    Google Scholar 

  92. Roy S, Kishbaugh TLS et al (2007) 1,3-Dipolar cycloaddition of 2- and 3-nitroindoles with azomethine ylides. A new approach to pyrrolo[3,4-b]indoles. Tetrahedron Lett 48:1313–1316

    Article  CAS  Google Scholar 

  93. Bronner SM, Garg NK (2009) Efficient synthesis of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate: a versatile precursor to o-benzyne. J Org Chem 74:8842–8843

    Article  CAS  Google Scholar 

  94. Padwa A, Fryxell GE et al (1989) A dipolar cycloaddition approach to pyrrolo[1,2-a]indoles using N-[(trimethylsilyl)methyl]-substituted indoles. J Org Chem 54:644–653

    Article  CAS  Google Scholar 

  95. Padwa A, Gasdaska JR (1986) A new approach to pyrrolo[1,2-a]indoles using azomethine ylides. J Am Chem Soc 108:1104–1106

    Article  CAS  Google Scholar 

  96. Kusama H, Miyashita Y et al (2006) Pt(II)- or Au(III)-catalyzed [3+2] cycloaddition of metal-containing azomethine ylides: highly efficient synthesis of the mitosene skeleton. Org Lett 8:289–292

    Article  CAS  Google Scholar 

  97. Letcher RM, Sin DWM et al (1993) Oxazolo[3,2-a]indoles, pyrrolo- and azepino[1,2-a]indoles from 3H-indole 1-oxides and acetylenecarboxylic esters by skeletal rearrangements. J Chem Soc Perkin Trans 1:939–944

    Google Scholar 

  98. Grotjahn DB, Vollhardt KPC (1986) Cobalt-mediated [2+2+2] cycloadditions of alkynes to the indole 2,3-double bond: an extremely facile entry into the novel 4a, 9a-dihydro-9H-carbazole nucleus. J Am Chem Soc 108:2091–2093

    Article  CAS  Google Scholar 

  99. Boese R, Van Sickle AP et al (1994) The cobalt-mediated [2+2+2] cycloaddition of a,w-diynes to the 2,3-double bond of indole. Synthesis:1374–1382

    Google Scholar 

  100. Eichberg MJ, Dorta RL et al (2000) The formal total synthesis of (±)-strychnine via a cobalt-mediated [2+2+2] cycloaddition. Org Lett 2:2479–2481

    Article  CAS  Google Scholar 

  101. Eichberg MJ, Dorta RL et al (2001) Approaches to the synthesis of (±)-strychnine via the cobalt-mediated [2+2+2] cycloaddition: rapid assembly of a classic framework. J Am Chem Soc 123:9324–9337

    Article  CAS  Google Scholar 

  102. Amslinger S, Aubert C et al (2008) Cobalt-mediated [2+2+2] cycloaddition of alkynyl boronates to indole and pyrrole double bonds. Synlett:2056–2060

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Berthel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Firooznia, F., Kester, R.F., Berthel, S.J. (2010). [2+2], [3+2] and [2+2+2] Cycloaddition Reactions of Indole Derivatives. In: Gribble, G. (eds) Heterocyclic Scaffolds II:. Topics in Heterocyclic Chemistry, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_53

Download citation

Publish with us

Policies and ethics