Skip to main content

Hydrothermal Conversion of Biomass into Fuel and Fine Chemicals

  • Chapter
  • First Online:
Bioprocess Engineering for Bioremediation

Abstract

Hydrothermal conversion is an important thermochemical conversion technique that is used to convert waste biomass into valuable products or biofuel. The process is usually performed in the presence of water at high temperature and high pressures. The biomass is depolymerized to form three phases such as biocrude, biogas, and biocarbon into small components in water. Based on the process conditions (temperature, pressure, catalyst, and time), the yield of the phases varies accordingly. Comparing to other thermochemical conversion techniques like combustion, pyrolysis, and gasification, the hydrothermal conversion is highly appropriate for handling biomass with high moisture content. According to the physicochemical properties of water, the process can be classified as hydrothermal carbonization, hydrothermal liquefaction (at subcritical conditions T, 250–374°C, and P, 4–22 MPa), and hydrothermal gasification (at supercritical conditions T > 374°C and P > 22 MPa). There has been significant research reported on the hydrothermal conversion of lignocellulosic biomasses, algal biomasses, and also co-utilization of these two with other waste materials. The interaction of water with the biomass results in formation of various chemicals like acids, alcohols, cyclic ketones, phenols, and methoxyphenols and more condensed structures like naphthols and benzofurans. This chapter focuses on the influence of the process parameters and types of biomass utilized on the hydrothermal conversion of biomass. Additionally, the use of biomass as not only an energy source but also as a viable source for value-added chemicals is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhaskar T, Pandey A (2015) Advances in thermochemical conversion of biomass – introduction. In: Pandey A, Bhaskar T, St­cker M, Sukumaran RK (eds) Recent advances in thermo-chemical conversion of biomass. Elsevier, Amsterdam, pp 3–30. https://doi.org/10.1016/B978-0-444-63289-0.00001-6

  2. Chen W, Chen Y, Yang H, Xia M, Li K, Chen X, Chen H (2017) Co-pyrolysis of lignocellulosic biomass and microalgae: products characteristics and interaction effect. Bioresour Technol 245:860–868

    CAS  PubMed  Google Scholar 

  3. Arvindnarayan S, Prabhu KKS, Shobana S, Kumar G, Dharmaraja J (2017) Upgrading of micro algal derived bio-fuels in thermochemical liquefaction path and its perspectives: a review. Int Biodeterior Biodegradation 119:260–272

    CAS  Google Scholar 

  4. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    CAS  Google Scholar 

  5. Koppejan J, Van Loo S (2012) The handbook of biomass combustion and co-firing. Routledge, London

    Google Scholar 

  6. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9(6):433

    CAS  PubMed  Google Scholar 

  7. Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, Fei Z, Rose JK, Domozych DS, Willats WG (2011) The charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68(2):201–211

    PubMed  Google Scholar 

  8. Zhou X, Li W, Mabon R, Broadbelt LJ (2017) A critical review on hemicellulose pyrolysis. Energ Technol 5(1):52–79

    CAS  Google Scholar 

  9. Bajpai P (2016) Structure of lignocellulosic biomass. In: Pretreatment of lignocellulosic biomass for biofuel production. Springer, Singapore, pp 7–12

    Google Scholar 

  10. Pettersen RC (1984) The chemical composition of wood. In: The chemistry of solid wood, vol 207. US Department of Agriculture, Forest service, Forest Products Laboratory, Madison, pp 57–126

    Google Scholar 

  11. Fowden L (1954) A comparison of the compositions of some algal proteins. Ann Bot 18(3):257–266

    CAS  Google Scholar 

  12. Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96(3):631–645

    CAS  PubMed  Google Scholar 

  13. Yao L, Gerde JA, Lee SL, Wang T, Harrata KA (2015) Microalgae lipid characterization. J Agric Food Chem 63(6):1773–1787

    CAS  PubMed  Google Scholar 

  14. Kruse A, Funke A, Titirici MM (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3):515–521

    CAS  PubMed  Google Scholar 

  15. He C, Giannis A, Wang JY (2013) Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Appl Energy 111:257–266

    CAS  Google Scholar 

  16. Zhang S, Zhu X, Zhou S, Shang H, Luo J, Tsang DC (2019) Hydrothermal carbonization for hydrochar production and its application. In: Biochar from biomass and waste. Elsevier, Amsterdam, pp 275–294

    Google Scholar 

  17. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J, Emmerich KH (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1):71–106

    CAS  Google Scholar 

  18. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4(2):160–177

    CAS  Google Scholar 

  19. Huang HJ, Yuan XZ (2015) Recent progress in the direct liquefaction of typical biomass. Prog Energy Combust Sci 49:59–80

    Google Scholar 

  20. Eboibi BEO, Lewis DM, Ashman PJ, Chinnasamy S (2014) Hydrothermal liquefaction of microalgae for biocrude production: improving the biocrude properties with vacuum distillation. Bioresour Technol 174:212–221

    CAS  PubMed  Google Scholar 

  21. Jin F, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ Sci 4(2):382–397

    CAS  Google Scholar 

  22. Chopra J, Mahesh D, Yerrayya A, Vinu R, Kumar R, Sen R (2019) Performance enhancement of hydrothermal liquefaction for strategic and sustainable valorization of de-oiled yeast biomass into green bio-crude. J Clean Prod 227:292–301

    CAS  Google Scholar 

  23. Haiduc AG, Brandenberger M, Suquet S, Vogel F, Bernier-Latmani R, Ludwig C (2009) Sun CHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation. J Appl Phycol 21(5):529–541

    CAS  Google Scholar 

  24. Paida VR, Brilman DWF, Kersten SRA (2019) Hydrothermal gasification of sorbitol: H2 optimisation at high carbon gasification efficiencies. Chem Eng J 358:351–361

    CAS  Google Scholar 

  25. Matsumura Y (2015) Hydrothermal gasification of biomass. In: Recent advances in thermo-chemical conversion of biomass. Elsevier, Amsterdam, pp 251–267

    Google Scholar 

  26. Yin S, Tan Z (2012) Hydrothermal liquefaction of cellulose to biocrude under acidic, neutral and alkaline conditions. Appl Energy 92:234–239

    CAS  Google Scholar 

  27. Mok WSL, Antal Jr MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31(4):1157–1161

    CAS  Google Scholar 

  28. Sasaki M, Hayakawa T, Arai K, Adschiri T (2003) Measurement of the rate of retro-aldol condensation of D-xylose in subcritical and supercritical water. In: Hydrothermal reactions and techniques. World Scientific Publishing, Singapore, pp 169–176

    Google Scholar 

  29. Kanetake T, Sasaki M, Goto M (2007) Decomposition of a lignin model compound under hydrothermal conditions. Chem Eng Technol 30(8):1113–1122

    Google Scholar 

  30. Zhang B, Huang HJ, Ramaswamy S (2007) Reaction kinetics of the hydrothermal treatment of lignin. In: Biotechnology for fuels and chemicals. Humana Press, Clifton, pp 487–499

    Google Scholar 

  31. Takeuchi Y, Jin F, Tohji K, Enomoto H (2008) Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances. J Mater Sci 43(7):2472–2475

    CAS  Google Scholar 

  32. Shi F, Wang P, Duan Y, Link D, Morreale B (2012) Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations. RSC Adv 2(26):9727–9747

    CAS  Google Scholar 

  33. Tang S, Shi Z, Tang X, Yang X (2019) Hydrotreatment of biocrudes derived from hydrothermal liquefaction and lipid extraction of the high-lipid Scenedesmus. Green Chem 21(12):3413–3423

    CAS  Google Scholar 

  34. Tungal R, Shende RV (2014) Hydrothermal liquefaction of pinewood (Pinus ponderosa) for H2, biocrude and biocrude generation. Appl Energy 134:401–412

    CAS  Google Scholar 

  35. Cengiz NÜ, Eren S, Sağlam M, Yüksel M, Ballice L (2016) Influence of temperature and pressure on hydrogen and methane production in the hydrothermal gasification of wood residues. J Supercrit Fluids 107:243–249

    Google Scholar 

  36. Cheng S, D’cruz I, Wang M, Leitch M, Xu C (2010) Highly efficient liquefaction of woody biomass in hot-compressed alcohol − water co-solvents. Energy Fuel 24(9):4659–4667

    CAS  Google Scholar 

  37. de Caprariis B, Bavasso I, Bracciale MP, Damizia M, De Filippis P, Scarsella M (2019) Enhanced bio-crude yield and quality by reductive hydrothermal liquefaction of oak wood biomass: effect of iron addition. J Anal Appl Pyrolysis 139:123–130

    Google Scholar 

  38. Alper K, Tekin K, Karagöz S (2019) Hydrothermal liquefaction of lignocellulosic biomass using potassium fluoride-doped alumina. Energy Fuel 33(4):3248–3256

    CAS  Google Scholar 

  39. Liu Y, Yao S, Wang Y, Lu H, Brar SK, Yang S (2017) Bio-and hydrochars from rice straw and pig manure: inter-comparison. Bioresour Technol 235:332–337

    CAS  PubMed  Google Scholar 

  40. Yuan XZ, Li H, Zeng GM, Tong JY, Xie W (2007) Sub-and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture. Energy 32(11):2081–2088

    CAS  Google Scholar 

  41. Küçük MM, Ağırtaş S (1999) Liquefaction of Prangmites australis by supercritical gas extraction. Bioresour Technol 69(2):141–143

    Google Scholar 

  42. Khampuang K, Boreriboon N, Prasassarakich P (2015) Alkali catalyzed liquefaction of corncob in supercritical ethanol–water. Biomass Bioenergy 83:460–466

    CAS  Google Scholar 

  43. Çağlar A, Demirbaş A (2001) Conversion of cotton cocoon shell to liquid products by supercritical fluid extraction and low pressure pyrolysis in the presence of alkalis. Energy Convers Manag 42(9):1095–1104

    Google Scholar 

  44. Saber M, Golzary A, Hosseinpour M, Takahashi F, Yoshikawa K (2016) Catalytic hydrothermal liquefaction of microalgae using nanocatalyst. Appl Energy 183:566–576

    CAS  Google Scholar 

  45. Yang W, Li X, Liu S, Feng L (2014) Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts. Energy Convers Manag 87:938–945

    CAS  Google Scholar 

  46. Yu G, Zhang Y, Guo B, Funk T, Schideman L (2014) Nutrient flows and quality of bio-crude oil produced via catalytic hydrothermal liquefaction of low-lipid microalgae. Bioenergy Res 7(4):1317–1328

    CAS  Google Scholar 

  47. Reddy HK, Muppaneni T, Ponnusamy S, Sudasinghe N, Pegallapati A, Selvaratnam T, Seger M, Dungan B, Nirmalakhandan N, Schaub T, Holguin FO (2016) Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp. Appl Energy 165:943–951

    CAS  Google Scholar 

  48. Tian W, Liu R, Wang W, Yin Z, Yi X (2018) Effect of operating conditions on hydrothermal liquefaction of Spirulina over Ni/TiO2 catalyst. Bioresour Technol 263:569–575

    CAS  PubMed  Google Scholar 

  49. Vo TK, Kim SS, Ly HV, Lee EY, Lee CG, Kim J (2017) A general reaction network and kinetic model of the hydrothermal liquefaction of microalgae Tetraselmis sp. Bioresour Technol 241:610–619

    CAS  PubMed  Google Scholar 

  50. Deniz I, Vardar-Sukan F, Yüksel M, Saglam M, Ballice L, Yesil-Celiktas O (2015) Hydrogen production from marine biomass by hydrothermal gasification. Energy Convers Manag 96:124–130

    CAS  Google Scholar 

  51. Promdej C, Chuntanapum A, Matsumura Y (2010) Effect of temperature on tarry material production of glucose in supercritical water gasification. J Jpn Inst Energy 89(12):1179–1184

    CAS  Google Scholar 

  52. Watanabe M, Sato T, Inomata H, Smith Jr RL, Arai Jr K, Kruse A, Dinjus E (2004) Chemical reactions of C1 compounds in near-critical and supercritical water. Chem Rev 104(12):5803–5822

    CAS  PubMed  Google Scholar 

  53. Ying GAO, CHEN HP, Jun WANG, Tao SHI, Hai-Ping YANG, Xian-Hua WANG (2011) Characterization of products from hydrothermal liquefaction and carbonation of biomass model compounds and real biomass. J Fuel Chem Technol 39(12):893–900

    Google Scholar 

  54. Tremel A, Stemann J, Herrmann M, Erlach B, Spliethoff H (2012) Entrained flow gasification of biocoal from hydrothermal carbonization. Fuel 102:396–403

    CAS  Google Scholar 

  55. Haarlemmer G, Guizani C, Anouti S, Déniel M, Roubaud A, Valin S (2016) Analysis and comparison of biocrudes obtained by hydrothermal liquefaction and fast pyrolysis of beech wood. Fuel 174:180–188

    CAS  Google Scholar 

  56. Zhang L, Wang Q, Wang B, Yang G, Lucia LA, Chen J (2015) Hydrothermal carbonization of corncob residues for hydrochar production. Energy Fuel 29(2):872–876

    CAS  Google Scholar 

  57. Gan J, Yuan W (2013) Operating condition optimization of corncob hydrothermal conversion for biocrude production. Appl Energy 103:350–357

    CAS  Google Scholar 

  58. Jena U, Das KC (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for biocrude production from microalgae. Energy Fuel 25(11):5472–5482

    CAS  Google Scholar 

  59. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8):1051–1063

    CAS  Google Scholar 

  60. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitra Devi Venkatachalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkatachalam, C.D., Sengottian, M., Ravichandran, S.R. (2020). Hydrothermal Conversion of Biomass into Fuel and Fine Chemicals. In: Jerold, M., Arockiasamy, S., Sivasubramanian, V. (eds) Bioprocess Engineering for Bioremediation. The Handbook of Environmental Chemistry, vol 104. Springer, Cham. https://doi.org/10.1007/698_2020_583

Download citation

Publish with us

Policies and ethics