Abstract
It is very important to understand the interaction between plastics and environment in ambient conditions. The plastics degrade because of this interaction and often their surface properties change resulting in the creation of new functional groups. The plastics after this change continue to interact with the environment and biota. It is a dynamic situation with continuous changing parameters. Polyethylene, polypropylene, and polyethylene terephthalate (PET) degrade through the mechanisms of photo-, thermal, and biodegradation. The three polymers degrade with different rates and different pathways. Under normal conditions, photo- and thermal degradation are similar. For polyethylene, photo-degradation results in sharper peaks in the bands which represent ketones, esters, acids, etc. on their infrared spectrum. The same is true for polypropylene but this polymer is more resistant to photo-degradation. The photo-oxidation of PET involves the formation of hydroperoxide species through oxidation of the CH2 groups adjacent to the ester linkages and the hydroperoxides species involving the formation of photoproducts through several pathways. For the three polymers, interaction with microbes and formation of biofilms are different. Generally, biodegradation results in the decrease of carbonyl indices if the sample has already been photo-degraded by exposure to UV. Studies with environmental samples agree with these findings but the degradation of plastics is very subjective to the local environmental conditions that are usually a combination of those simulated in laboratory conditions. For example, some studies suggested that fragmentation of plastic sheet by solar radiation can occur within months to a couple of years on beaches, whereas PET bottles stay intact over 15 years on sea bottoms.
Similar content being viewed by others
References
Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364(1526):1985–1998. doi:10.1098/rstb.2008.0205
Rochman MC, Browne AM, Halpern SB, Hentschel TB, Hoh E, Karapanagioti KH, Rios-Mendoza ML, Takada HS, Teh S, Thompson CT (2013) Classify plastic waste as hazardous. Nature 494:169–171
Endo S, Takizawa R, Okuda K, Takada H, Chiba K, Kanehiro H, Ogi H, Yamashita R, Date T (2005) Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull 50:1103–1114
Holmes LA, Turner A, Thompson CR (2014) Interactions between trace metals and plastic production pellets under estuarine conditions. Mar Chem 167:25–32
Graca B, Beldowska M, Wrzesie P, Zgrundo A (2014) Styrofoam debris as a potential carrier of mercury within ecosystems. Environ Sci Pollut Res 21:2263–2271
Ioakeimidis C, Zeri C, Kaberi H, Galatchi M, Antoniadis K, Streftaris N, Galgani F, Papathanassiou E, Papatheodorou G (2014) Comparative study of marine litter on the seafloor of coastal areas in the Eastern Mediterranean and Black Seas. Mar Pollut Bull 89:1–2
Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D, Zettler ER, Farrington JW, Reddy CM, Peacock EE, Ward MW (2011) Organic micropollutants in marine plastic debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692
Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324
Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S, Endo S, Mato Y, Saha M, Okuda K, Nakashima A, Murakami M, Zurcher N, Booyatumanondo R, Zakaria MP, Dung LQ, Gordon M, Miguez C, Suzuki S, Moore C, Karapanagioti HK, Weerts S, McClurg T, Burres E, Smith W, Velkenburg MV, Lang JS, Lang RC, Laursen D, Danner B, Stewardson N, Thompson RC (2009) International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCB, DDT, and HCHs. Mar Pollut Bull 58:1437–1446
Rios LM, Moore C, Jones PR (2007) Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull 54:1230–1237
Taniguchi T, Colabuono FI, Dias PS, Oliveira R, Fisner M, Turra A, Izar GM, Abessa DMS, Saha M, Hosoda J, Yamashita R, Takada H, Lourenço RA, Magalhães CA, Bícego MC, Montone RC (2016) Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil. Mar Pollut Bull 106:87–94
Pegram AJ, Andrady LA (1989) Outdoor weathering of selected polymeric materials under marine exposure conditions. Polym Degrad Stab 26:333–345
Karapanagioti HK, Endo S, Ogata Y, Takada H (2011) Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece. Mar Pollut Bull 62:312–317
Plastics Europe, Association of Plastics Manufacturers (2013) Plastics the facts 2013. Available from http://www.plasticseurope.org/Document/plastics-the-facts-2013.aspx
Smith R (2005) Biodegradable polymers for industrial applications. Woodhead Publishing Limited, Cambridge, Ch. 14.1, p 357
Ranby B (1989) Photodegradation and photo-oxidation of synthetic polymers. J Anal Appl Pyrolysis 15:237–247
Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584
Artham T, Doble M (2008) Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 8(1):14–24
Swift G (1997) Requirements for biodegradable water-soluble polymers. Polym Degrad Stab 59:19–24
Francois-Heude A, Richard E, Desnoux E, Colin X (2014) Influence of temperature, UV-light wavelength and intensity of polypropylene photo-thermal oxidation. Polym Degrad Stab 100:10–20
Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442
Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265
Ammala A, Bateman S, Dean K, Petinakisa E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C, Leong KH (2011) An overview of degradable and biodegradable polyolefins. Prog Polym Sci 36:1015–1049
Chiellini E, Corti A, D’Antone S, Baciu R (2006) Oxo-biodegradable carbon backbone polymers. Oxidative degradation of polyethylene under accelerated test conditions. Polym Degrad Stab 91:2739–2747
Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87
Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104
Zheng Y, Yanful K, Bassi AS (2005) A review of plastic waste biodegradation. Crit Rev Biotechnol 25:243–250
Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77:100–106
Restrepo-Flórez JM, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene. A review. Int Biodeter Biodegr 88:83–90
Cheng S, Dehaye F, Bailly C, Biebuyck JJ, Legras R, Parks L (2005) Studies on polyethylene pellets modified by low dose radiation prior to part formation. Nucl Instrum Methods Phys Res B 236:130–136
Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79:385–397
Kyrikou I, Briassoulis D, Hiskakis M, Babou E (2011) Analysis of photo-chemical degradation behaviour of polyethylene mulching film with pro-oxidants. Polym Degrad Stab 96:2237–2252
Muthukumar T, Aravinthan A, Lakshmi K, Venkatesan R, Vedaprakash L, Doble M (2011) Fouling and stability of polymers and composites in marine environment. Int Biodeter Biodegr 65:276–284
Pastorelli G, Cucci C, Garcia O, Piantanida G, Elnaggar A, Cassar M, Strlic M (2014) Environmentally induced color change during natural degradation of selected polymers. Polym Degrad Stab 107:198–209
Gardette M, Perthue A, Gardette JL, Janecska T, Foldes E, Pukanszky B, Therias S (2013) Photo and thermal oxidation of polyethylene. Comparison of mechanisms and influence of unsaturated content. Polym Degrad Stab 98:2383–2390
Carpentieri I, Brunella V, Bracco P, Paganini MC, Del Prever EMB, Luda MP, Bonomi S, Costa L (2011) Post irradiation oxidation of different polyethylenes. Polym Degrad Stab 96:624–629
Edge M, Hayes M, Mohammadian M, Allen SN, Jewitt ST (1991) Aspects of poly(ethylene terephthalate) degradation on archival life and environmental degradation. Polym Degrad Stab 32:131–153
Roy PK, Surekha P, Rajagopal C, Chatterjee SN, Choudhary V (2006) Accelerated aging of LDPE films containing cobalt complexes as prooxidants. Polym Degrad Stab 91:1791–1799
Benitez A, Sanchez JJ, Arnal ML, Muller AJ, Rodriguez O, Morales G (2013) Abiotic degradation of LDPE and LLDPE formulated with pro-oxidant additive. Polym Degrad Stab 98:490–501
Yang R, Li Y, Yu J (2005) Photo-stabilization of linear low density polyethylene by inorganic nanoparticles. Polym Degrad Stab 88:168–174
Mendes LC, Rufino ES, De Paula FOC, Torres AC Jr (2002) Mechanical, thermal and microstructure evaluation of HDPE after weathering in Rio de Janeiro city. Polym Degrad Stab 79:371–383
Fotopoulou KN, Karapanagioti HK (2012) Surface properties of beached plastic pellets. Mar Environ Res 81:70–77
Ojeda T, Freitas A, Birck K, Dalmolin E, Jacques R, Bento F, Camargo F (2011) Degradability of linear polyolefins under natural weathering. Polym Degrad Stab 96:703–707
Satoto R, Subowo WS, Yusiasih R, Takane Y, Watanabe Y, Hatakeyama T (1997) Weathering of high-denstity polyethylene in different latitudes. Polym Degrad Stab 56:275–279
Mincer TJ, Zettler ER, Amaral-Zettler LA (2016) Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility. In: Takada H, Karapanagioti HK (eds) Hazardous chemicals associated with plastics in the marine environment, The handbook of environmental chemistry. Springer. doi:10.1007/698_2016_12
Krupp RL, Jewell JW (1992) Biodegradability of modified plastic films in controlled biological environments. Environ Sci Tech 26:193–198
Albertsson AC, Barenstedt C, Karlsson S (1994) Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym 45:97–103
Bikiaris DN, Karayannidis GP (1999) Effect of carboxylic end groups on thermooxidative stability of PET and PBT. Polym Degrad Stab 63:213–218
Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G (2003) Environmental degradation of polyethylene. Polym Degrad Stab 81:441–452
Sudhakar M, Doble M, Sriyutha Murthy P, Venkatesan R (2008) Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int Biodeter Biodegr 61:203–213
Nowak B, Pajak J, Drozd-Bratkowicz M, Rymarz G (2011) Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeter Biodegr 65:757–767
Orhan Y, Buyukgungor H (2000) Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int Biodeter Biodegr 45:49–55
Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Pollut Res 20:4146–4153
Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62:197–200
Artham T, Sudhakar M, Venkatesan R, Madhavan Nair C, Murty KVGK, Doble M (2009) Biofouling and stability of synthetic polymers in sea water. Int Biodeter Biodegr 63:884–890
Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault JP, Pitteri S, Samuel G, Pichon G, Lemaire G, Delort AM (2010) Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab 95:1011–1021
Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100
Donlan MR (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890
Wanasekara N, Chalivendra V, Calvert P (2011) Sub-micron scale mechanical properties of polypropylene fibers exposed to ultraviolet and thermal degradation. Polym Degrad Stab 96:432–437
Zhao H, Li KYR (2006) A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer 47:3207–3217
Yang X, Ding X (2006) Prediction of outdoor weathering performance of polypropylene filaments by accelerated weathering tests. Geotext Geomembranes 24:103–109
Lv Y, Huang Y, Yang J, Kong M, Yang H, Zhao J, Li G (2015) Outdoor and accelerated laboratory weathering of polypropylene: a comparison and correlation study. Polym Degrad Stab 112:145–159
Yano A, Akai N, Ishii H, Satoh C, Hironiwa T, Millington KR, Nakata M (2013) Thermal oxidative degradation of additive-free polypropylene pellets investigated by multichannel Fourier-transform chemiluminescence spectroscopy. Polym Degrad Stab 98:2680–2686
Song D, Gao J, Li X, Lu L (2014) Evaluation of aging behavior of polypropylene in natural environment by principal component analysis. Polym Test 33:131–137
Bajer K, Braun U (2014) Different aspects of the accelerated oxidation of polypropylene at increased pressure in an autoclave with regard to temperature, pretreatment exposure media. Polym Test 37:102–111
Li J, Yang R, Yu J, Liu Y (2008) Natural photo-aging degradation of polypropylene nanocomposites. Polym Degrad Stab 93:84–89
Zhenfeng Z, Xingzhou H, Zubob L (1996) Wavelength sensitivity of photooxidation of polypropylene. Polym Degrad Stab 51:93–97
Arkatkar A, Arutchelvi J, Bhaduri S, Veera Uppara P, Doble M (2009) Degradation of unpretreated and thermally pretreated by soil consortia. Int Biodeter Biodegr 63:106–111
Singhania RR, Christophe G, Perchet G, Troquet J, Larroche C (2012) Immersed membrane bioreactors: an overview with special emphasis on anaerobic bioprocesses. Bioresour Technol 122:171–180
Jeyakumar D, Chirsteen J, Doble M (2013) Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour Technol 148:78–85
Ramis X, Cadenato A, Salla JM, Morancho JM, Valles A, Contat L, Ribes A (2004) Thermal degradation of polypropylene starch-based materials with enhanced biodegradability. Polym Degrad Stab 86:483–491
Arkatkar A, Juwarkar AA, Bhaduri S, Veera Uppara P, Doble M (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeter Biodegr 64:530–536
Fontanella S, Bonhomme S, Brusson JM, Pitteri S, Samuel G, Pichon G, Lacoste J, Fromageot D, Lemaire G, Delort AM (2013) Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polym Degrad Stab 98:875–884
Miyazaki M, Arai T, Shibata K, Terano M, Nakatani H (2012) Study on biodegradation mechanism of novel oxo-biodegradable polypropylenes in an aqueous medium. Polym Degrad Stab 97:2177–2184
Kint PRD, Martınez de Ilarduya A, Munoz-Guerra S (2003) Hydrolytic degradation of poly(ethylene terephthalate) copolymers containing nitrated units. Polym Degrad Stab 79:353–358
Eubeler JP, Bernhard M, Knepper TP (2010) Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. Trends Anal Chem 29:1
Mueller JR (2006) Biological degradation of synthetic polyesters – enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128
Botelho G, Queiros A, Liberal S, Gijsman P (2001) Studies on thermal and thermo-oxidative degradation of poly(ethylene terephthalate) and poly(butylene terephthalate). Polym Degrad Stab 74:39–48
Webb KH, Arnott J, Crawford JR, Ivanova PE (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 5:1–18
Venkatachalam S, Nayak GS, Labde VJ, Gharal RP, Rao K, Kelkar KA (2012) Degradation and recyclability of poly (ethylene terephthalate). In: Saleh HEDM (ed.) Chapter 4, polyester, InTech, ISBN: 978-953-51-0770-5, doi:10.5772/48612
Müller JR, Kleeberg I, Deckwer WD (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95
Fagerburg DR, Clauberg H (2003) Photodegradation of poly(ethylene terephthalate) and poly (ethylene/1,4 cyclhexylenedimethylene terephthalate). Chapter 18 In: Scheirs J, Long TE (eds) Modern polyesters, chemistry and technology of polyesters and copolyester. John Wiley & Sons, p 609
Lee OK, Chae B, Kim BS, Jung MJ, Lee WS (2012) Two-dimensional correlation analysis study of the photo-degradation of poly(ethylene terephthalate) film. Vib Spectrosc 60:142–145
Djebara M, Stoquert JP, Abdesselam M, Muller D, Chami AC (2012) FTIR analysis of polyethylene terephthalate irradiated by MeV He+. Nucl Instrum Methods Phys Res B 274:70–77
Sammon C, Yarwood J, Everall N (2000) An FT-IR study of the effect of hydrolytic degradation on the structure of thin PET films. Polym Degrad Stab 67:149–158
Gregory MR (1983) Virgen plastic granules on some beaches of eastern Canada and Bermuda. Mar Environ Res 10:73–92
Orhan Y, Hrenovic J, Buyukgungor H (2004) Biodegradation of plastic compost bags under controlled soil conditions. Int Biodeter Biodegr 45:49–55
Basfar AA, Idriss Ali KM (2006) Natural weathering test for films of various formulations of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE). Polym Degrad Stab 91:437–443
Fotopoulou KN, Karapanagioti HK (2015) Surface properties of beached plastics. Environ Sci Pollut Res 22:11022–11032
Ioakeimidis C, Fotopoulou KN, Karapanagioti HK, Geraga M, Zeri C, Papathanassiou E, Galgani F, Papatheodorou G (2016) The degradation potential of PET bottles in the marine environment: an ATR-FTIR based approach. Sci Rep 6:1–8. Publisher’s official version: http://doi.org/10.1038/srep23501
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Fotopoulou, K.N., Karapanagioti, H.K. (2017). Degradation of Various Plastics in the Environment. In: Takada, H., Karapanagioti, H.K. (eds) Hazardous Chemicals Associated with Plastics in the Marine Environment. The Handbook of Environmental Chemistry, vol 78. Springer, Cham. https://doi.org/10.1007/698_2017_11
Download citation
DOI: https://doi.org/10.1007/698_2017_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95566-7
Online ISBN: 978-3-319-95568-1
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)