Skip to main content

Controlling Autolysis During Flagella Insertion in Gram-Negative Bacteria

  • Chapter
  • First Online:
Protein Reviews

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 925))

Abstract

The flagellum is an important macromolecular machine for many pathogenic bacteria. It is a hetero-oligomeric structure comprised of three major sub-structures: basal body, hook and thin helical filament. An important step during flagellum assembly is the localized and controlled degradation of the peptidoglycan sacculus to allow for the insertion of the rod as well as to facilitate anchoring for proper motor function. The peptidoglycan lysis events require specialized lytic enzymes, β-N-acetylglucosaminidases and lytic transglycosylases, which differ in flagellated proteobacteria. Due to their autolytic activity, these enzymes need to be controlled in order to prevent cellular lysis. This review summarizes are current understanding of the peptidoglycan lysis events required for flagellum assembly and motility with a main focus on Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PG:

peptidoglycan

MurNAc:

N-acetylmuramic acid

GlcNAc:

N-acetylglucosamine

PBP:

penicillin-binding proteins

LT:

lytic transglycosylase

T3SS:

type three secretion system

Mot:

motor

OmpA:

outer membrane protein A

PGB:

peptidoglycan binding

Mlt:

membrane-bound lytic transglycosylases

Slt:

soluble lytic transglycosylases

GH:

glycoside hydrolase

StFlgJ:

Salmonella Typhimurium FlgJ

PDB:

Protein Data Bank

SAC:

substrate-assisted catalysis

RlpA:

rare lipoprotein A

1,6-anhydroMurNAc:

1,6-anhydromuramic acid

NAG thiazoline:

N-acetylglucosamine thiazoline.

References

  • Aika T, Yoshimura H, Namba K (1990) Monolayer crystallization of flagellar L-P rings by sequential addition and depletion of lipid. Science 252:1544–1546

    Google Scholar 

  • Artola-Recolons C, Carrasco-López C, Llarrull LI, Kumarasiri M, Lastochkin E, Martínez de Ilarduya I, Meindl K, Usón I, Mobashery S, Hermoso JA (2011) High-resolution crystal structure of an outer membrane-anchored endolytic peptidoglycan lytic transglycosylases (MltE) from Escherichia coli. Biochemistry 50(13):2384–2386

    Article  CAS  PubMed  Google Scholar 

  • Artola-Recolons C, Lee M, Bernardo-García N, Blázquez B, Hesek D, Bartual SG, Mahasenan KV, Lastochkin E, Pi H, Boggess B, Meindl K, Usón I, Fischer JF, Mobashery S, Hermoso JA (2014) Structure and cell wall cleavage by modular lytic transglycosylases MltC of Escherichia coli. ACS Chem Biol 9:2058–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai Y, Kojima S, Kato H, Nishioka N, Kawagishi I, Homma M (1997) Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 176(16):5104–5110

    Article  Google Scholar 

  • Bai XH, Chen HJ, Jiang YL, Wen Z, Huang Y, Cheng W, Li Q, Qi L, Zhang JR, Chen Y, Zhou CZ (2014) Structure of pneumococcal peptidoglycan hydrolase LytB reveals insights into the bacterial cell wall remodeling and pathogenesis. J Biol Chem 289:23403–23416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn NT, Clarke AJ (2001) Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol 52:78–84

    Article  CAS  PubMed  Google Scholar 

  • Bublitz M, Polle L, Holland C, Heinz DW, Nimtz M, Schubert W (2009) Structural basis for autoinhibition and activation of Auto, a virulence- associated peptidoglycan hydrolase of Listeria monocytogenes. Mol Microbiol 71:1509–1522

    Article  CAS  PubMed  Google Scholar 

  • Burkinshaw BJ, Deng W, Lameignѐre E, Wasney GA, Zhu H, Worrall LJ, Finlay BB, Strynadka NC (2015) Structural analysis of a specialized type III secretion system peptidoglycan-cleaving enzyme. J Biol Chem 290:10406–10417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Guttenplan SB, Blair KM, Kearns DB (2009) Role of the σD-dependent autolysins in Bacillus subtilis population heterogeneity. J Bacteriol 191(18):5775–5784

    Article  CAS  PubMed  Google Scholar 

  • Clarke CA, Scheurwater EM, Clarke AJ (2010) The vertebrate lysozyme inhibitor Ivy functions to inhibit the activity of lytic transglycosylases. J Biol Chem 285:14843–14847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen EJ, Hughes KT (2014) Rod-to-hook transition for extracellular flagellum assembly is catalyzed by the L-ring dependent rod scaffold removal. J Bacteriol 196:2387–2395

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Mora J, Ballado T, González-Pedrajo B, Camerena L, Dreyfus G (2007) The flagellar muramidase from the photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 189:7998–8004

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Mora J, Osorio-Valeriano M, González-Pedrajo B, Ballado T, Camarena L, Dreyfus G (2012) The C terminus of the flagellar muramidase SltF modulates the interaction with FlgJ in Rhodobacter sphaeroides. J Bacteriol 194:4513–4520

    Article  PubMed  PubMed Central  Google Scholar 

  • De Mot R, Vanderleyden J (1994) The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both Gram-positive and Gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microbiol 12(2):333–334

    Article  PubMed  Google Scholar 

  • Demchick P, Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus substilis. J Bacteriol 178(3):768–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drouillard S, Armand S, Davies GJ, Vorgias CE, Henrissat B (1997) Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation. Biochem J 328:945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Pedrajo B, de la Mora J, Ballado T, Camerena L, Dreyfus G (2002) Characterization of the flgG operon of Rhodobacter sphaeroides WS8 and its role in flagellum biosynthesis. Biochim Biophys Acta 1579:55–63

    Article  PubMed  Google Scholar 

  • Gumbart JC, Beeby M, Jensen GJ, Roux B (2014) Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale stimulations. PLoS Comput Biol 10(2):e1003475. doi:10.1371/journal.pcbi.1003475

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto W, Ochiai A, Momma K, Itoh T, Mikami B, Maruyama Y, Murata K (2009) Crystal structure of the glycosidase family 73 peptidoglycan hydrolase FlgJ. Biochem Biophys Res Commun 381(1):16–21

    Article  CAS  PubMed  Google Scholar 

  • Herlihey FA, Moynihan PJ, Clarke AJ (2014) The essential protein for bacterial flagella formation FlgJ functions as a β-N-acetylglucosaminidase. J Biol Chem 289(45):31029–31042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herlihey FA, Osorio-Valeriano M, Dreyfus G, Clarke AJ (2016) Modulation of the lytic activity of the dedicated autolysin for flagella formation SltF by flagella rod proteins FlgB and FlgF. J Bacteriol. doi:10.1128/JB.00203-16

    Google Scholar 

  • Hirano T, Minamino T, Macnab RM (2001) The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. J Mol Biol 312:359–369

    Article  CAS  PubMed  Google Scholar 

  • Hizukuri Y, Morton JF, Yakushi T, Kojima S, Homma M (2009) The peptidoglycan-binding (PGB) domain of the Escherichia coli Pal protein can also function as the PGB domain in E. coli flagellar motor protein MotB. J Biochem 146:219–229

    Article  CAS  PubMed  Google Scholar 

  • Holtje J-V (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hӧltje JV, Mirelman D, Sharon N, Schwarz U (1975) Novel type of murein transglycosylases in Escherichia coli. J Bacteriol 124:1067–1076

    Google Scholar 

  • Homma M, Komeda Y, Iino T, Macnab RM (1987) The flaFIX gene product of Salmonella typhimurium is a flagellar basal body component with a signal peptide for export. J Bacteriol 169:1493–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hӧpper C, Carle A, Sivanesan D, Hoeppner S, Baron C (2005) The putative lytic transglycosylases VirB from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology 151:3469–3482

    Article  Google Scholar 

  • Hoskin ER, Vogt C, Bakker EP, Manson MD (2006) The Escherichia coli MotAB proton channel unplugged. J Mol Biol 364:921–937

    Article  Google Scholar 

  • Inagaki N, Iguchi A, Yokoyama T, Yokoi KJ, Ono Y, Yamakawa A, Taketo A, Kodaira K (2009) Molecular properties of the glucosaminidase AcmA from Lactococcus lactis MG1363: mutational and biochemical analyses. Gene 447(2):61–71

    Article  CAS  PubMed  Google Scholar 

  • Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS (2014) The bacterial septal ring protein RlpA is a lytic transglycosylases that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol Microbiol 93(1):113–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp S, Vocadlo DJ, Gao Z, Kirk B, Lou J, Withers SG (1996) NAG-thiazoline, An N-Acetyl-β-hexosaminidase inhibitor that implicates acetamido participation. J Am Chem Soc 118:6804–6805

    Article  CAS  Google Scholar 

  • Kojima S, Blair DF (2001) Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–13050

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Imada K, Sakuma M, Sudo Y, Kojima C, Minamino T, Homma M, Namba K (2008a) Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol Microbiol 73:710–718

    Article  Google Scholar 

  • Kojima S, Shinohara A, Terashima H, Yakushi T, Sakuma M, Homma M, Namba K, Imada K (2008b) Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY. Proc Natl Acad Sci U S A 105(22):7696–7701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koushik P, Erhardt M, Hirano T, Blair DF, Hughes KT (2008) Energy source of flagellar type III secretion. Nature 451:489–492

    Article  Google Scholar 

  • Kubori T, Shimamoto N, Shigeru Y, Namba K, Aizawa S-I (1992) Morphological pathway of flagellar assembly in Salmonella typhimurium. J Mol Biol 226:433–446

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Hesek D, Llarrull LI, Lastochkin E, Pi H, Boggess B, Mobashery S (2013) Reactions of all E. coli lytic transglycosylases with bacterial cell wall. J Am Chem Soc 135(9):3311–3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Domínguez-Gil T, Hesek D, Mahasenan KV, Lastochkin E, Hermoso JA, Mobashery S (2016) Turnover of bacterial cell wall by SltB3, a multidomain lytic transglycosylases of Pseudomonas aeruginosa. ACS Chem Biol. doi:10.1021/acschembio.6b00194

    Google Scholar 

  • Legaree BA, Clarke AJ (2008) Interaction of penicillin-binding protein 2 with soluble lytic transglycosylases B1 in Pseudomonas aeruginosa. J Bacteriol 190(20):6922–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung AKW, Duewel HS, Honek JF, Berghuis AM (2001) Crystal structure of the lytic transglycosylases from bacteriophage lambda in complex with hexa-N-acetylchitohexaose. Biochemistry 40:5665–5673

    Article  CAS  PubMed  Google Scholar 

  • Lipski A, Hervé M, Lombard V, Nurizzo D, Mengin-Lecreulx D, Bourne Y, Vincent F (2015) Structural and biochemical characterization of the β-N-acetylglucosaminidase from Thermotoga maritima: toward rationalization of mechanistic knowledge in the GH73 family. Glycobiology 25(3):319–330

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Countinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Macdonald JM, Tarling CA, Taylor EJ, Dennis RJ, Myers DS, Knapp S, Davies GJ, Withers SG (2010) Chitinase inhibition by chitobiose and chitotriose thiazolines. Angew Chem Int Ed Engl 49(14):2599–2602

    Article  CAS  PubMed  Google Scholar 

  • Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 577:77–100

    Article  Google Scholar 

  • Maruyama Y, Ochiai A, Itoh T, Mikami B, Hashimoto W, Murata K (2010) Mutational studies of the peptidoglycan hydrolase FlgJ of Sphingomonas sp. strain A1. J Basic Microbiol 50(4):311–317

    Article  CAS  PubMed  Google Scholar 

  • McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    Article  CAS  PubMed  Google Scholar 

  • Minamino T, Imada K (2015) The bacterial flagellar motor and its structural diversity. Trends Microbiol 23(5):267–274

    Article  CAS  PubMed  Google Scholar 

  • Minamino T, Macnab RM (1999) Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 181:1388–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minaminoa T, Namba K (2008) Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451:485–488

    Article  Google Scholar 

  • Moynihan PJ, Clarke AJ (2011) O-Acetylated peptidoglycan: controlling the activity of bacterial autolysins and lytic enzymes of innate immune systems. Int J Biochem Cell Biol 43:1655–1659

    Article  CAS  PubMed  Google Scholar 

  • Nambu T, Minamino T, Macnab RM, Kutsukake K (1999) Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J Bacteriol 181:1555–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nambu T, Inagaki Y, Kutsukake K (2006) Plasticity of the domain structure in FlgJ, a bacterial protein involved in flagellar rod formation. Genes Genet Syst 81:381–389

    Article  CAS  PubMed  Google Scholar 

  • Nikolaidis I, Izore T, Job V, Thielens N, Breukink E, Dessen A (2012) Calcium-dependent complex formation between PBP2 and lytic transglycosylases SltB1. Microb Drug Resist 18:298–305

    Article  CAS  PubMed  Google Scholar 

  • Osorio-Valeriano M, de la Mora J, Camarena L, Dreyfus G (2016) Biochemical characterization of the flagellar rod components of Rhodobacter sphaeroides: properties and interactions. J Bacteriol 198(3):544–552

    Article  CAS  PubMed Central  Google Scholar 

  • Park JS, Lee WC, Yeo KJ, Ryu K-S, Kumarasiri M, Hesek D, Lee M, Mobashery S, Song JH, Kim SI, Lee JC, Cheong C, Jeon YH, Kim H-Y (2012) Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane. FASEB J 26(1):219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons LM, Lin F, Orban J (2006) Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry 45:2122–2128

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer JM, Moynihan PJ, Clarke CA, Clarke AJ (2012) Control of lytic transglycosylase activity within bacterial cell walls. In: Reid, Twine, Read (eds) Bacterial glycomics. Caister Academic Press, Norfolk, pp 55–68

    Google Scholar 

  • Powell AJ, Liu ZJ, Nicholas RA, Davies C (2006) Crystal structure of the lytic transglycosylases MltA from N. gonorrhoeae and E. coli: insights into interdomain movements and substrate binding. J Mol Biol 359:122–136

    Article  CAS  PubMed  Google Scholar 

  • Reboul CF, Andrews DA, Nahar MF, Buckle AM, Roujeinikova A (2011) Crystallographic and molecular dynamics analysis of loop motions unmasking the peptidoglycan-binding site in stator protein MotB of flagellar motor. PLoS One 6(4):e18981. doi:10.1371/journal.pone.0018981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid CW, Blackburn NT, Legaree BA, Auzanneau F-I, Clarke AJ (2004) Inhibition of membrane-bound lytic transglycosylase B by NAG-thiazoline. FEBS Lett 574:73–79

    Article  CAS  PubMed  Google Scholar 

  • Reid CW, Legaree BA, Clarke AJ (2007) Role of Ser216 in the mechanism of action of membrane-bound lytic transglycosylases B: further evidence for substrate-assisted catalysis. FEBS Lett 581:4988–4992

    Article  CAS  PubMed  Google Scholar 

  • Rico-Lastres P, Díez-Martínez R, Iglesias-Bexiga M, Bustamante N, Aldridge C, Hesek D, Lee M, Mobashery S, Gray J, Vollmer W, Garcia P, Menéndez M (2015) Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Sci Rep 5:16198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romeis T, Hӧltje JV (1994) Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylases in Escherichia coli. J Biol Chem 269(34):21603–21607

    CAS  PubMed  Google Scholar 

  • Roujeinikova A (2008) Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition. Proc Natl Acad Sci U S A 105:10348–10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roure S, Bonis M, Chaput C, Ecobichon C, Mattox A, Barriѐre C, Geldmacher N, Guadagnini S, Schmitt C, Prѐvost MC, Labigne A, Backert S, Ferrero RL, Boneca IG (2012) Peptidoglycan maturation enzymes affect flagellar functionality in bacteria. Mol Micrbiol 86:845–856

    Article  CAS  Google Scholar 

  • Scheurwater EM, Clarke AJ (2008) The C-terminal domain of Escherichia coli YhfD functions as a lytic transglycosylases. J Biol Chem 283(13):8363–8373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheurwater E, Reid CW, Clarke AJ (2008) Lytic transglycosylases: bacterial space-making autolyins. Int J Biochem Cell Biol 40:586–591

    Article  CAS  PubMed  Google Scholar 

  • Strating H, Vandenende C, Clarke AJ (2012) Changes in peptidoglycan structure and metabolism during differentiation of Proteus mirabilis into swarmer cells. Can J Microbiol 58:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Sudiarta IP, Fukushima T, Sekiguchi J (2010) Bacillus subtilis CwlQ (previously YjbJ) is a bifunctional enzyme exhibiting muramidase and soluble-lytic transglycosylases activities. Biochem Biophys Rec Commun 398:606–612

    Article  CAS  Google Scholar 

  • Suzuki H, Yonekura K, Murata K, Hirai T, Oosawa K, Namba K (1998) A structural feature in the central channel of the bacterial flagellar FliE ring complex is implicated in type III protein export. J Struct Biol 124:104–114

    Article  CAS  PubMed  Google Scholar 

  • Terashima H, Fukuoka H, Yakushi T, Kojima S, Homma M (2006) The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation. Mol Microbiol 62(4):1170–1180

    Article  CAS  PubMed  Google Scholar 

  • Terashima H, Koike M, Kojima S, Homma M (2010) The flagellar basal body-associated protein FlgT is essential for a novel ring structure in the sodium-driven Vibrio motor. J Bacteriol 192(21):5609–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terwisscha van Scheltinga AC, Armand S, Kalk KH, Isogai A, Henrissat B, Dijkstra BW (1995) Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and x-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34:15619–15623

    Article  CAS  PubMed  Google Scholar 

  • Tews I, Perrakis A, Oppenheim A, Dauter Z, Wilson KS, Vorgias CE (1996) Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat Struct Biol 3:638–648

    Article  CAS  PubMed  Google Scholar 

  • Thunnissen A-MWH, Isaacs NW, Dijkstra BW (1995) The catalytic domain of a bacterial lytic transglycosylases defines a novel class of lysozymes. Proteins 22:245–258

    Article  CAS  PubMed  Google Scholar 

  • van Asselt EJ, Dijkstra AJ, Kalk KH, Takacs B, Keck W, Dijkstra BW (1999a) Crystal structure of Escherichia coli lytic transglycosylases Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure 7:1167–1180

    Article  PubMed  Google Scholar 

  • van Asselt EJ, Thunnissen A-MWH, Dijkstra BW (1999b) High resolution crystal structures of the Escherichia coli lytic transglycosylases Slt70 and its complex with a peptidoglycan fragment. J Mol Biol 291:877–898

    Article  PubMed  Google Scholar 

  • van Asselt EJ, Kalk KH, Dijkstra BW (2000) Crystallographic studies of the interactions of Escherichia coli lytic transglycosylases Slt35 with peptidoglycan. Biochemistry 39:1924–1934

    Article  PubMed  Google Scholar 

  • van Straaten KE, Dijkstra BW, Vollmer W, Thunnissen A-MWH (2005) Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylases fold. J Mol Biol 353:1068–1082

    Article  Google Scholar 

  • Vázquez-Laslop N, Hyunwoo L, Hu R, Neyfakh AA (2001) Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli. J Bacteriol 183(8):2399–2404

    Article  PubMed  PubMed Central  Google Scholar 

  • Viollier PH, Shapiro L (2003) A lytic transglycosylases homologue, PleA, is required for the assembly of pili and the flagellum at the Caulobacter crescentus cell pole. Mol Microbiol 49:331–345

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1178:1714–1734

    Article  Google Scholar 

  • Vollmer W, Joris B, Charlier P, Foster S (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286

    Article  CAS  PubMed  Google Scholar 

  • Weadge JT, Clarke AJ (2005) Identification and characterization of O-acetylpeptidoglycan esterase: a novel enzyme discovered in Neisseria gonorrhoeae. Biochemistry 45:839–851

    Article  Google Scholar 

  • Yokoi KJ, Sugahara K, Iguchi A, Nishitani G, Ikeda M, Shimada T, Inagaki N, Yamakawa A, Taketo A, Kodaira K (2008) Molecular properties of the putative autolysin Atl(WM) encoded by Staphylococcus warneri M: mutational and biochemical analyses of the amidase and glucosaminidase domains. Gene 416(1–2):66–76

    Article  CAS  PubMed  Google Scholar 

  • Yunck R, Hongbaek C, Bernhardt TG (2016) Identification of MltG as a potential terminase for peptidoglycan polyermization in bacteria. Mol Microbiol 99(4):700–718

    Article  CAS  PubMed  Google Scholar 

  • Zabola P, Bailey-Elkin BA, Derksen M, Mark BL (2016) Structural and biochemical insights into the peptidoglycan hydrolase domain of FlgJ from Salmonell typhimurium. PLoS One 11(2):e0149204

    Article  Google Scholar 

  • Zhao X, Zhang K, Boquoi T, Hu B, Motaleb MA, Miller KA, James ME, Charon NW, Manson MD, Norris SJ, Li C, Liu J (2013) Cryoelectron tomography reveals the sequential assembly of bacterial flagellum in Borrelia burgdorferi. Proc Natl Acad Sci U S A 110(35):14390–14395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Takao M, Li N, Sakuma M, Nishino Y, Homma M, Kojima S, Imada K (2014) Conformational change in the periplasmic region of the flagellar stator coupled with the assembly around the rotor. Proc Natl Acad Sci U S A 111(37):13523–13528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research on the lytic transglycosylases and their control continues to be funded by an operating grant to AJC from the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPN 03965–2016).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herlihey, F.A., Clarke, A.J. (2016). Controlling Autolysis During Flagella Insertion in Gram-Negative Bacteria. In: Atassi, M. (eds) Protein Reviews. Advances in Experimental Medicine and Biology(), vol 925. Springer, Singapore. https://doi.org/10.1007/5584_2016_52

Download citation

Publish with us

Policies and ethics