Skip to main content

Perspective on the Storage of Hydrogen: Past and Future

  • Chapter
  • First Online:
Fuel Cells and Hydrogen Storage

Part of the book series: Structure and Bonding ((STRUCTURE,volume 141))

Abstract

There are clear advantages to using hydrogen as a fuel, but storage of hydrogen in a light-weight and compact form remains a challenge. This review highlights past breakthroughs that led to the current thinking in hydrogen storage methodology. Metal organic frameworks are discussed briefly, with greater attention to the storage of hydrogen in other molecules. Many molecular storage strategies rely on the thermal decomposition of hydrogen hetero atom bonds and formation of hydrogen to hydrogen bonds. An acid-base thought model is presented to explain observed behaviors and to guide future endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parry ML et al (eds) (2007) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge

    Google Scholar 

  2. Ball M, Wietschel M (eds) (2009) The hydrogen economy: opportunities and challenges. Cambridge University Press, Cambridge

    Google Scholar 

  3. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, West Sussex

    Google Scholar 

  4. (1988) CRC handbook of chemistry and physics, 69th ed. CRC, Boca Raton, FL

    Google Scholar 

  5. Graham T. Brittanica online encyclopedia. Available at: http://www.britannica.com/EBchecked/topic/240743/Thomas-Graham#ref=ref94045. Accessed 30 Jan 2009

  6. Palladium hydride. Wikipedia. Available at: http://en.wikipedia.org/wiki/Palladium_hydride. Accessed 5 Mar 2011

  7. Van Vucht JHN et al (1970) Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res Rep 25:133–140

    Google Scholar 

  8. Hydride-Metal Related Databases. Sandia National Laboratory. Available at: http://hydpark.ca.sandia.gov/DBFrame.html. Accessed Jan 2009

  9. Chambers A et al (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102:4253–4256

    Article  CAS  Google Scholar 

  10. Strobel R et al (2006) Hydrogen storage by carbon materials. J Power Sources 159:781–801

    Article  Google Scholar 

  11. Bhatia SK, Myers AL (2006) Optimum conditions for adsorptive storage. Langmuir 22:1688

    Article  CAS  Google Scholar 

  12. Garrone E et al (2008) Enthalpy–entropy correlation for hydrogen adsorption on zeolites. Chem Phys Lett 456:68–70

    Article  CAS  Google Scholar 

  13. Yang R (2000) Hydrogen storage by alkali-doped carbon nanotubes revisited. Carbon 38:623–641

    Article  CAS  Google Scholar 

  14. Liu C et al (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455

    Article  CAS  Google Scholar 

  15. Zhao X et al (2004) Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 306:1012–1015

    Article  CAS  Google Scholar 

  16. Li H et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  CAS  Google Scholar 

  17. Murray LJ et al (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38:1294–1314

    Article  CAS  Google Scholar 

  18. Dinca M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47:6766–6779

    Article  CAS  Google Scholar 

  19. Kaye SS et al (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O (1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129:14176–14177

    Article  CAS  Google Scholar 

  20. Messer CE (1960) United States of America. Office of Scientific and Technical Information. A Survey Report on Lithium Hydride

    Google Scholar 

  21. Beryllium hydride. Wikipedia. Available at: http://en.wikipedia.org/wiki/Beryllium_hydride. Accessed 17 Mar 2009

  22. Huheey JE et al (1993) Inorganic chemistry: principles of structure and reactivity, 4th edn. Addison-Wesley, New York

    Google Scholar 

  23. Adams RM (ed) (1964) Boron, metallo-boron compounds, and boranes, 1st edn. Interscience, New York

    Google Scholar 

  24. Newson E et al (1998) Seasonal storage of hydrogen stationary systems with liquid organic hydrides. Int J Hydrogen Energy 23:905–909

    Article  CAS  Google Scholar 

  25. Pez GP et al (2006) Hydrogen storage by reversible hydrogenation of pi-conjugated substrates. US Patent 7101530 B2

    Google Scholar 

  26. Uribe FA et al (2002) Effect of ammonia as potential fuel impurity on proton. J Electrochem Soc 149:A293–A296

    Article  CAS  Google Scholar 

  27. Checketts JH (1998) Hydrogen generation system and pelletized fuel. US Patent 5817157

    Google Scholar 

  28. Magnesium hydride. Wikipedia. Available at: http://en.wikipedia.org/wiki/Magnesium_hydride. Accessed Feb 2011

  29. Aluminum hydride. Wikipedia. Available at: http://en.wikipedia.org/wiki/Aluminium_hydride. Accessed Feb 2011

  30. Zidan R et al (2009) Aluminum hydride: a reversible storage material for hydrogen storage. Available at: http://sti.srs.gov/fulltext/SRNS-STI-2008-00068.pdf

  31. Ahluwalia RK et al (2009) Automotive storage of hydrogen in alane. Int J Hydrogen Energy 34:7731–7740

    Article  CAS  Google Scholar 

  32. Lacina D et al (2011) The reversible synthesis of bis(quinuclidine) alane. J Alloys Compd (in press) doi:10.1016/j.jallcom.2010.10.010

    Google Scholar 

  33. Graetz J et al (2011) Aluminum hydride as a hydrogen and energy storage material: past, present and future. J Alloys Compd (in press) doi:10.1016/j.jallcom.2010.11.115

    Google Scholar 

  34. Li H et al (2010) Preparation and characterization of alane complexes for energy applications. J Phys Chem C 114:3318–3322

    Article  CAS  Google Scholar 

  35. US Department of Energy. Targets for on-board hydrogen storage systems: Current R&D focus is on 2010 Targets. Available at: http://www1.eere.energy.gov. Accessed 31 Jan 2009

  36. Dowdy ZR (1995) Chemical explosion burns 2 lab technicians; building evacuated after S. Boston blast. The Boston Globe, City Edition ed., Metro/Region sec: 24

    Google Scholar 

  37. Bogdanovic B, Schwickardi M (1997) Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd 253–254:1–9

    Article  Google Scholar 

  38. Amendola SC et al (1999) A novel high power density borohydride-air cell. J Power Sources 84:130–133

    Article  CAS  Google Scholar 

  39. Amendola SC et al (2000) A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int J Hydrogen Energy 25:969–975

    Article  CAS  Google Scholar 

  40. Chen P et al (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420:302–304

    Article  CAS  Google Scholar 

  41. Orimo S-i et al (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132

    Article  CAS  Google Scholar 

  42. Jensen CM, Gross KJ (2001) Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material. Appl Phys A 72:213–219

    Article  CAS  Google Scholar 

  43. Schlesinger HI et al (1953) New developments in the chemistry of diborane and the borohydrides. I. General summary. J Am Chem Soc 75:186–190

    Article  CAS  Google Scholar 

  44. Gross K et al (2000) In situ X-ray diffraction study of the decomposition of NaAlH4. J Alloys Compd 297:270–281

    Article  CAS  Google Scholar 

  45. Balema VP, Balema L (2005) Missing pieces of the puzzle or about some unresolved issues in solid state chemistry of alkali metal aluminohydrides. Phys Chem Chem Phys 7:1310–1314

    CAS  Google Scholar 

  46. Zuttel A et al (2007) Tetrahydroborates as new hydrogen storage materials. Scr Mater 56:823–828

    Article  Google Scholar 

  47. Soldate AM (1947) Crystal structure of sodium borohydride. J Am Chem Soc 69:987–988

    Article  CAS  Google Scholar 

  48. Chen J et al (2001) Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6. J Phys Chem B 105:11214–11220

    Article  CAS  Google Scholar 

  49. Balema VP et al (2000) Rapid solid-state transformation of tetrahedral [AlH4]− into octahedral [AlH6]3− in lithium aluminohydride. Chem. Commun 1665–666

    Google Scholar 

  50. Heats of formation and chemical compositions. Purdue School AAE Propulsion Web Page. Available at: http://cobweb.ecn.purdue.edu/~propulsi/propulsion/comb/propellants.html. Purdue School of Aeronautics and Astronautics. Accessed 7 Feb 2009

  51. Block J, Gray AP (1965) The thermal decomposition of lithium aluminum hydride. Inorg Chem 4:304–305

    Article  CAS  Google Scholar 

  52. Engel T, Reid P (2010) Thermodynamics, statistical thermodynamics, and kinetics, 2nd edn. Prentice Hall, Upper saddle River, p 69

    Google Scholar 

  53. Shriver DF et al (1990) Inorganic chemistry. Oxford UP

    Google Scholar 

  54. Orimo S et al (2006) Experimental studies on intermediate compound of LiBH4. Appl Phys Lett 89:021920

    Article  Google Scholar 

  55. Dieter G (1958) Verfahren zur Herstellung von Boranaten. German Patent 1077644

    Google Scholar 

  56. Au M, Walters RT (2010) Reversibility aspect of lithium borohydrides. Int J Hydrogen Energy 35:10311–10316

    Article  CAS  Google Scholar 

  57. Friedrichs O et al (2008) Direct synthesis of LiBH4 and LiBD4 from the elements. Acta Mater 56:949–954

    Article  CAS  Google Scholar 

  58. Wade RC (1981) Specialty inorganic chemicals. In: Thompson R (ed) Royal Society of Chemistry, London, pp 25–57

    Google Scholar 

  59. Shim J-H et al (2010) Effect of hydrogen back pressure on dehydrogenation behavior of LiBH4-based reactive hydride composites. J Phys Chem Lett 1:59–63

    Article  CAS  Google Scholar 

  60. Pendolino F et al (2009) Effect of boron on the activation energy of the decomposition of LiBH4. J Phys Chem C 113:17231–17234

    Article  CAS  Google Scholar 

  61. Anton DL, Mosher DA (2005) High density hydrogen storage system demonstration using NaAlH4 based complex compound hydrides. Department of Energy Hydrogen Program. Available at: http://www.hydrogen.energy.gov/pdfs/progress05/vi_a_2_anton.pdf. Accessed 31 Jan 2009

  62. Venpureâ„¢ Solution. Rohm and Haas Corp

    Google Scholar 

  63. Garrett DE (1998) Borates: handbook of deposits, processing, properties, and use. Academic, Sand Diego

    Google Scholar 

  64. Kreevoy MM, Hutchins JEC (1972) H2BH3 as an intermediate in tetrahydridoborate hydrolysis. J Am Chem Soc 94:6371–6376

    Article  CAS  Google Scholar 

  65. Michaelides A et al (2003) Different surface chemistries of water on Ru{0001}: from monomer adsorption to partially dissociated bilayers. J Am Chem Soc 125:2746–2755

    Article  CAS  Google Scholar 

  66. Liu BH, Li ZP (2009) A review: hydrogen generation from borohydride hydrolysis reaction. J Power Sources 187:527–534

    Article  CAS  Google Scholar 

  67. Holbrook KA, Twist PJ (1971) Hydrolysis of the borohydride ion catalyzed by metal-boron alloys. J Chem Soc A 890–894

    Google Scholar 

  68. Pena-Alonso R (2007) A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells. J Power Sources 165:315–323

    Article  CAS  Google Scholar 

  69. Go/No-Go Recommendation for Sodium Borohydride for On-Board Vehicular Hydrogen Storage. Rep. no. NREL/MP-150-42220. Nov 2007. National Renewable Energy Laboratory. Available at: http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/42220.pdf. Accessed 7 Feb 2009

  70. Hovland V et al (2003) Water and heat balance in a fuel cell vehicle with a sodium borohydride hydrogen fuel processor. Presented at the future transportation technology conference & exhibition, Costa Mesa, CA. SAE 2003-01-2271

    Google Scholar 

  71. Strizki M, Mohring RM (2004) Hydrogen gas generation system. US Patent 7105033

    Google Scholar 

  72. Millennium Cell and Horizon poised to unveil HydroPak. Fuel Cell Today. Available at: http://www.fuelcelltoday.com/online/news/articles/2008-01/Millennium-Cell-and-Horizon-pois. Accessed 17 Mar 2009

  73. Demirci UB, Adkim PM (2009) Ten-year efforts and a no-go recommendation for sodium borohydride for on-board automotive hydrogen storage. Int J Hydrogen Energy 34:2638–2645

    Article  CAS  Google Scholar 

  74. Aardahl CL, Rassat SD (2009) Overview of systems considerations for on-board chemical hydrogen storage. Int J Hydrogen Energy 34:6676–6683

    Article  CAS  Google Scholar 

  75. Linden D, Reddy T (2001) Handbook of batteries. McGraw-Hill Professional, New York

    Google Scholar 

  76. Xiong Z et al (2004) Ternary imides for hydrogen storage. Adv Mater 16:1522–1525

    Article  CAS  Google Scholar 

  77. Reilly JJ, Wiswall RH (1967) The reaction of hydrogen with alloys of magnesium and copper. Inorg Chem 6:2220–2223

    Article  CAS  Google Scholar 

  78. Reilly JJ, Wiswall RH (1968) Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem 7:2254–2256

    Article  CAS  Google Scholar 

  79. Vajo JJ et al (2004) Altering hydrogen storage properties by hydride destabilization. J Phys Chem B 108:13977–13983

    Article  CAS  Google Scholar 

  80. Siegel DJ (2007) Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures. Phys Rev B 76:134102

    Article  Google Scholar 

  81. Shore SG, Parry RW (1955) The crystalline compound ammonia-borane, HNBH. J Am Chem Soc 77:6084–6085

    Article  CAS  Google Scholar 

  82. Wahl WA (1925) Probleme der Borchemie. Z Anorg Allgem Chem 146:230

    Article  CAS  Google Scholar 

  83. Stowe AC et al (2007) In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material. Phys Chem Chem Phys 9:1831–1836

    Article  CAS  Google Scholar 

  84. Smith S et al (2005) Prepr Symp Am Chem Soc Div Fuel Chem 50:112–113

    CAS  Google Scholar 

  85. Sit V et al (1987) The thermal dissociation of NH3BH3. Thermochim Acta 113:379–382

    Article  CAS  Google Scholar 

  86. Baumann J (2005) Thermal decomposition of polymeric aminoborane (H2BNH2)x. Thermochim Acta 430:9–14

    Article  CAS  Google Scholar 

  87. Gutowska A et al (2005) Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed 44:3578

    Article  CAS  Google Scholar 

  88. Davis BL et al (2009) Efficient regeneration of partially spent ammonia borane fuel. Angew Chem Int Ed 48:6812–6816

    Article  CAS  Google Scholar 

  89. Campbell PG et al (2010) Hydrogen storage by boron-nitrogen heterocycles: a simple route for spent fuel regeneration. J Am Chem Soc 132:3289–3291

    Article  CAS  Google Scholar 

  90. de Jongh PE, Adelhelm P (2010) Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem 3:1332–1348

    Article  Google Scholar 

  91. Keaton RJ (2007) Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J Am Chem Soc 129:1844–1845

    Article  CAS  Google Scholar 

  92. Bluhm ME et al (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128:7748–7749

    Article  CAS  Google Scholar 

  93. Chandra M, Xu Q (2007) Room temperature hydrogen generation from aqueous ammonia borane using noble metal nanoclusters as highly active catalysts. J Power Sources 168:135–142

    Article  CAS  Google Scholar 

  94. Clark TJ et al (2007) Highly efficient colloidal cobalt- and rhodium-catalyzed hydrolysis of H3N-BH3 in air. Inorg Chem 46:7522–7527

    Article  CAS  Google Scholar 

  95. Chen P, Zhu M (2008) Recent progress in hydrogen storage. Mater Today 11:36–43

    Article  Google Scholar 

  96. Wu H et al (2010) A new family of metal borohydride ammonia borane complexes: synthesis, structures, and hydrogen storage properties. J Mater Chem 20:6550–6556

    Article  CAS  Google Scholar 

  97. Kang X et al (2008) Ammonia borane destabilized by lithium hydride: an advanced on-board hydrogen storage material. Adv Mater 20:2756–2759

    Article  CAS  Google Scholar 

  98. Diyabalange HV et al (2007) Calcium amidotrihydroborate: a hydrogen storage material. Angew Chem Int Ed 46:8995–8997

    Article  CAS  Google Scholar 

  99. Xiong Z et al (2008) High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater 7:138–141

    Article  CAS  Google Scholar 

  100. Wang P, Kang X (2008) Hydrogen-rich boron-containing materials for hydrogen storage. Dalton Trans 40:5400–5413

    Article  Google Scholar 

  101. Zou X et al (2010) Hydrogen storage in a Ca-decorated, B-substituted metal organic framework. Int J Hydrogen Energy 35:198–203

    Article  CAS  Google Scholar 

  102. Fahra OK (2010) De novo synthesis of a metal organic framework featuring ultra high surface areas and gas storage capacities. Nat Chem 2:944–948

    Article  Google Scholar 

  103. Tesfaye AA et al. Prediction of a multi-center bonded solid boron hydride for hydrogen storage. Accepted PRB available at: http://arxiv.org/PS_cache/arxiv/pdf/1003/1003.0492v1.pdf. Accessed 3 Mar. 2011

  104. Wolverton C et al (2008) Discovery of novel hydrogen storage materials: an atomic scale computational approach. J Phys Condens Matter 20:064228, 14pp

    Google Scholar 

  105. Shore SG et al (1982) Structure of the [B2H7]− anion. J Am Chem Soc 104:7669–7670

    Article  CAS  Google Scholar 

  106. Beall H, Gaines DF (1999) Mechanistic aspects of boron hydride reactions. Inorg Chim Acta 289:1–10

    Article  CAS  Google Scholar 

  107. Hough WV et al (1956) The sodium-diborane reaction. J Am Chem Soc 78:689

    Article  CAS  Google Scholar 

  108. Ortega JV et al (2005) Triborohydride salts as hydrogen storage materials and preparation thereof. Patent US 2005/0135996 A1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kelly, M.T. (2011). Perspective on the Storage of Hydrogen: Past and Future. In: Bocarsly, A., Mingos, D. (eds) Fuel Cells and Hydrogen Storage. Structure and Bonding, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_46

Download citation

Publish with us

Policies and ethics