Skip to main content

3-Hydroxychromone Probes Precisely Located and Oriented in Lipid Bilayers: A Toolkit for Biomembrane Research

  • Chapter
  • First Online:
Fluorescent Methods to Study Biological Membranes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

Environment-sensitive dyes due to the sensitivity of their spectra to the physicochemical properties of their environment are unique tools for probing model and biological membranes. Here, we describe a particular class of environment-sensitive dyes based on 3-hydroxychromones. These dyes exhibit excited-state intramolecular proton transfer resulting in dual emission, highly sensitive to environment polarity and hydration. Appropriate molecular design of the new probes allows precise localization and orientation of their fluorophore in the lipid bilayers, which confer high specificity to particular membrane properties. In this respect, interface localization of the probes allows monitoring lipid order, while vertical orientation is required to achieve sensitivity to dipole and transmembrane potentials. Finally, biological applications of these probes for sensing lipid domains (rafts) and apoptosis are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demchenko AP, Mely Y, Duportail G, Klymchenko AS (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96(9):3461

    Article  CAS  Google Scholar 

  2. Klymchenko AS (2012) Solvatochromic fluorescent dyes as universal tools for biological research. Actual Chim 359:20–26

    CAS  Google Scholar 

  3. Loving GS, Sainlos M, Imperiali B (2010) Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends Biotechnol 28(2):73–83

    Article  CAS  Google Scholar 

  4. Haidekker MA, Theodorakis EA (2007) Molecular rotors – fluorescent biosensors for viscosity and flow. Org Biomol Chem 5(11):1669–1678

    Article  CAS  Google Scholar 

  5. Hwan MK, Byeong HJ, Hyon JY, Myoung JA, Mun SS, Jin HH, Lee KJ, Chul HK, Joo T, Hong SC, Bong RC (2008) Two-photon fluorescent turn-on probe for lipid rafts in live cell and tissue. J Am Chem Soc 130(13):4246–4247

    Article  Google Scholar 

  6. Kuimova MK, Yahioglu G, Levitt JA, Suhling K (2008) Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J Am Chem Soc 130(21):6672–6673

    Article  CAS  Google Scholar 

  7. Suhling K, Levitt JA, Chung PH, Kuimova MK, Yahioglu G (2012) Fluorescence lifetime imaging of molecular rotors in living cells. J Visual Exper (60): e2925

    Google Scholar 

  8. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358

    Article  CAS  Google Scholar 

  9. Lippert EL (1975) Laser-spectroscopic studies of reorientation and other relaxation processes in solution. In: Birks JB (ed) Organic and biomolecular chemistry, vol 2. Wiley, New York, pp 1–31

    Google Scholar 

  10. Slavik J (1982) Anilinonaphthalene sulfonate as a probe of membrane-composition and function. Biochim Biophys Acta 694(1):1–25

    Article  CAS  Google Scholar 

  11. Krishna MMG (1999) Excited-state kinetics of the hydrophobic probe Nile red in membranes and micelles. J Phys Chem A 103(19):x1

    Article  Google Scholar 

  12. Sykora J, Jurkiewicz P, Epand RM, Kraayenhof R, Langner M, Hof M (2005) Influence of the curvature on the water structure in the headgroup region of phospholipid bilayer studied by the solvent relaxation technique. Chem Phys Lipids 135(2):213–221

    Article  CAS  Google Scholar 

  13. Chong PL (1988) Effects of hydrostatic pressure on the location of Prodan in lipid bilayers and cellular membranes. Biochemistry 27(1):399

    Article  CAS  Google Scholar 

  14. Jurkiewicz P, Olzynska A, Langner M, Hof M (2006) Headgroup hydration and mobility of DOTAP/DOPC bilayers: a fluorescence solvent relaxation study. Langmuir 22(21):8741–8749

    Article  CAS  Google Scholar 

  15. Rowe BA, Neal SL (2006) Photokinetic analysis of prodan and laurdan in large unilamellar vesicles from multivariate frequency-domain fluorescence. J Phys Chem B 110(30):15021–15028

    Article  CAS  Google Scholar 

  16. Barucha-Kraszewska J, Kraszewski S, Jurkiewicz P, Ramseyer C, Hof M (2010) Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states. Biochim Biophys Acta 1798(9):1724–1734

    Article  CAS  Google Scholar 

  17. Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2004) Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys J 86(5):2929–2941

    Article  CAS  Google Scholar 

  18. Bagatolli LA (2006) To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758(10):1541

    Article  CAS  Google Scholar 

  19. Bondar OP, Pivovarenko VG, Rowe ES (1998) Flavonols–new fluorescent membrane probes for studying the interdigitation of lipid bilayers. Biochim Biophys Acta 1369(1):119–130

    Article  CAS  Google Scholar 

  20. Alakoskela JMI, Kinnunen PKJ (2001) Probing phospholipid main phase transition by fluorescence spectroscopy and a surface redox reaction. J Phys Chem B 105(45):11294

    Article  CAS  Google Scholar 

  21. Demchenko AP, Shcherbatska NV (1985) Nanosecond dynamics of charged fluorescent probes at the polar interface of a membrane phospholipid bilayer. Biophys Chem 22(3):131–143

    Article  CAS  Google Scholar 

  22. Zwaal RFA, Schroit AJ (1997) Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89(4):1121

    CAS  Google Scholar 

  23. Kucherak OA, Oncul S, Darwich Z, Yushchenko DA, Arntz Y, Didier P, Mely Y, Klymchenko AS (2010) Switchable Nile red-based probe for cholesterol and lipid order at the outer leaflet of biomembranes. J Am Chem Soc 132(13):4907

    Article  CAS  Google Scholar 

  24. Shynkar VV, Klymchenko AS, Kunzelmann C, Duportail G, Muller CD, Demchenko AP, Freyssinet JM, Mely Y (2007) Fluorescent biomembrane probe for ratiometric detection of apoptosis. J Am Chem Soc 129(7):2187–2193

    Article  CAS  Google Scholar 

  25. Loura LM, Ramalho JP (2007) Location and dynamics of acyl chain NBD-labeled phosphatidylcholine (NBD-PC) in DPPC bilayers. A molecular dynamics and time-resolved fluorescence anisotropy study. Biochim Biophys Acta 1768(3):467–478

    Article  CAS  Google Scholar 

  26. Huster D, Muller P, Arnold K, Herrmann A (2001) Dynamics of membrane penetration of the fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group attached to an acyl chain of phosphatidylcholine. Biophys J 80(2):822–831

    Article  CAS  Google Scholar 

  27. Klymchenko AS, Duportail G, Ozturk T, Pivovarenko VG, Mely Y, Demchenko AP (2002) Novel two-band ratiometric fluorescence probes with different location and orientation in phospholipid membranes. Chem Biol 9(11):1199–1208

    Article  CAS  Google Scholar 

  28. Lakowicz JR, Bevan DR, Maliwal BP, Cherek H, Balter A (1983) Synthesis and characterization of a fluorescence probe of the phase transition and dynamic properties of membranes. Biochemistry 22(25):5714–5722

    Article  CAS  Google Scholar 

  29. Jurkiewicz P, Sykora J, Olzynska A, Humpolickova J, Hof M (2005) Solvent relaxation in phospholipid bilayers: principles and recent applications. J Fluoresc 15(6):883

    Article  CAS  Google Scholar 

  30. Kim HM, Choo HJ, Jung SY, Ko YG, Park WH, Jeon SJ, Kim CH, Joo T, Cho BR (2007) A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8(5):553

    Article  CAS  Google Scholar 

  31. Jin L, Millard AC, Wuskell JP, Dong X, Wu D, Clark HA, Loew LM (2006) Characterization and application of a new optical probe for membrane lipid domains. Biophys J 90(7):2563

    Article  CAS  Google Scholar 

  32. Millard AC, Jin L, Wei MD, Wuskell JP, Lewis A, Loew LM (2004) Sensitivity of second harmonic generation from styryl dyes to transmembrane potential. Biophys J 86(2):1169

    Article  CAS  Google Scholar 

  33. Wuskell JP, Boudreau D, Wei MD, Jin L, Engl R, Chebolu R, Bullen A, Hoffacker KD, Kerimo J, Cohen LB, Zochowski MR, Loew LM (2006) Synthesis, spectra, delivery and potentiometric responses of new styryl dyes with extended spectral ranges. J Neurosci Methods 151(2):200

    Article  Google Scholar 

  34. Wiener MC, White SH (1992) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data: III. Complete structure. Biophys J 61(2I):434–447

    Article  CAS  Google Scholar 

  35. Kułakowska A, Jurkiewicz P, Sýkora J, Benda A, Mely Y, Hof M (2010) Fluorescence lifetime tuning-a novel approach to study flip-flop kinetics in supported phospholipid bilayers. J Fluoresc 20(2):563–569

    Article  Google Scholar 

  36. Clarke RJ, Kane DJ (1997) Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Biochim Biophys Acta 1323(2):223

    Article  CAS  Google Scholar 

  37. Vitha MF, Clarke RJ (2007) Comparison of excitation and emission ratiometric fluorescence methods for quantifying the membrane dipole potential. Biochim Biophys Acta 1768(1):107–114

    Article  CAS  Google Scholar 

  38. Ho C, Slater SJ, Stubbs CD (1995) Hydration and order in lipid bilayers. Biochemistry 34(18):6188

    Article  CAS  Google Scholar 

  39. Formosinho SJ, Arnaut LG (1993) Excited-state proton transfer reactions II. Intramolecular reactions. J Photochem Photobiol A 75(1):21–48

    Article  CAS  Google Scholar 

  40. Klymchenko AS, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5:461–468

    Article  CAS  Google Scholar 

  41. Yesylevskyy SO, Klymchenko AS, Demchenko AP (2005) Semi-empirical study of two-color fluorescent dyes based on 3-hydroxychromone. J Mol Struct 755(1–3):229

    CAS  Google Scholar 

  42. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18(14):3075–3078

    Article  CAS  Google Scholar 

  43. Shynkar V, Mely Y, Duportail G, Piemont E, Klymchenko A, Demchenko A (2003) Picosecond time-resolved fluorescence studies are consistent with reversible excited-state intramolecular proton transfer in 4′-(dialkylamino)-3-hydroxyflavones. J Phys Chem A 107(45):9522–9529

    Article  CAS  Google Scholar 

  44. Klymchenko AS, Demchenko AP (2002) Electrochromic modulation of excited-state intramolecular proton transfer: the new principle in design of fluorescence sensors. J Am Chem Soc 124(41):12372

    Article  CAS  Google Scholar 

  45. Klymchenko AS, Mely Y, Demchenko AP, Duportail G (2004) Simultaneous probing of hydration and polarity of lipid bilayers with 3-hydroxyflavone fluorescent dyes. Biochim Biophys Acta 1665(1–2):6–19

    CAS  Google Scholar 

  46. Das R, Klymchenko AS, Duportail G, Mely Y (2008) Excited state proton transfer and solvent relaxation of a 3-hydroxyflavone probe in lipid bilayers. J Phys Chem B 112(38):11929–11935

    Article  CAS  Google Scholar 

  47. Parasassi T, Di Stefano M, Loiero M, Ravagnan G, Gratton E (1994) Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using laurdan probe. Biophys J 66(3):763

    Article  CAS  Google Scholar 

  48. Parasassi T, Krasnowska EK, Bagatolli L, Gratton E (1998) Laurdan and prodan as polarity-sensitive fluorescent membrane probes. J Fluoresc 8(4):365

    Article  CAS  Google Scholar 

  49. Sykora J, Slavicek P, Jungwirth P, Barucha J, Hof M (2007) Time-dependent stokes shifts of fluorescent dyes in the hydrophobic backbone region of a phospholipid bilayer: combination of fluorescence spectroscopy and ab initio calculations. J Phys Chem B 111(21):5869

    Article  CAS  Google Scholar 

  50. Shynkar VV, Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2005) Two-color fluorescent probes for imaging the dipole potential of cell plasma membranes. Biochim Biophys Acta 1712(2):128–136

    Article  CAS  Google Scholar 

  51. Montana V, Farkas DL, Loew LM (1989) Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry 28(11):4536

    Article  CAS  Google Scholar 

  52. Klymchenko AS, Duportail G, Mely Y, Demchenko AP (2003) Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc Natl Acad Sci USA 100(20):11219–11224

    Article  CAS  Google Scholar 

  53. M’Baye G, Shynkar VV, Klymchenko AS, Mely Y, Duportail G (2006) Membrane dipole potential as measured by ratiometric 3-hydroxyflavone fluorescence probes: accounting for hydration effects. J Fluoresc 16(1):35

    Article  Google Scholar 

  54. Klymchenko AS, Stoeckel H, Takeda K, Mely Y (2006) Fluorescent probe based on intramolecular proton transfer for fast ratiometric measurement of cellular transmembrane potential. J Phys Chem B 110(27):13624–13632

    Article  CAS  Google Scholar 

  55. Klymchenko A, Ozturk T, Pivovarenko VG, Demchenko A (2002) Synthesis of furanochromones: a new step in improvement of fluorescence properties. Tetrahedron Lett 43:7079–7082

    Article  CAS  Google Scholar 

  56. Klymchenko AS, Pivovarenko VG, Ozturk T, Demchenko AP (2003) Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J Chem 27:1336–1343

    Article  CAS  Google Scholar 

  57. Fromherz P, Hubener G, Kuhn B, Hinner MJ (2008) Annine-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity. Eur Biophys J 37(4):509

    Article  CAS  Google Scholar 

  58. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569

    Article  CAS  Google Scholar 

  59. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80(3):1417

    Article  CAS  Google Scholar 

  60. Scherfeld D, Kahya N, Schwille P (2003) Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. Biophys J 85(6):3758–3768

    Article  CAS  Google Scholar 

  61. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221

    Article  CAS  Google Scholar 

  62. Owen DM, Rentero C, Magenau A, Abu-Siniyeh A, Gaus K (2012) Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc 7(1):24–35

    Article  CAS  Google Scholar 

  63. Kuhry JG, Fonteneau P, Duportail G, Maechling C, Laustriat G (1983) TMA-DPH: a suitable fluorescence polarization probe for specific plasma membrane fluidity studies in intact living cells. Cell Biophys 5(2):129–140

    CAS  Google Scholar 

  64. Lentz BR (1989) Membrane ‘fluidity’ as detected by diphenylhexatriene probes. Chem Phys Lipids 50(3–4):171

    Article  CAS  Google Scholar 

  65. Klymchenko AS, Oncul S, Didier P, Schaub E, Bagatolli L, Duportail G, Mely Y (2008) Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone. Biochim Biophys Acta 1788:495–499

    Google Scholar 

  66. Oncul S, Klymchenko AS, Kucherak OA, Demchenko AP, Martin S, Dontenwill M, Arntz Y, Didier P, Duportail G, Mely Y (2010) Liquid ordered phase in cell membranes evidenced by a hydration-sensitive probe: effects of cholesterol depletion and apoptosis. Biochim Biophys Acta 1798:1436–1443

    Article  CAS  Google Scholar 

  67. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods 184(1):39

    Article  CAS  Google Scholar 

  68. Duportail G, Klymchenko A, Mely Y, Demchenko A (2001) Neutral fluorescence probe with strong ratiometric response to surface charge of phospholipid membranes. FEBS Lett 508(2):196–200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey S. Klymchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klymchenko, A.S., Duportail, G., Mély, Y. (2012). 3-Hydroxychromone Probes Precisely Located and Oriented in Lipid Bilayers: A Toolkit for Biomembrane Research. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_44

Download citation

Publish with us

Policies and ethics