Skip to main content

The Proton Sensitivity of Fluorescent Proteins: Towards Intracellular pH Indicators

  • Chapter
  • First Online:
Fluorescent Proteins II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 12))

  • 1621 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Minor variability depends on the structure of the synthetic Chro analog.

  2. 2.

    Minor variability depends on the addition of a small amount of methanol/ethanol to improve Chro solubility.

References

  1. Srivastava J, Barber DL, Jacobson MP (2007) Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda, Md) 22:30–39

    CAS  Google Scholar 

  2. Wang H, Singh D, Fliegel L (1997) The Na+/H+ antiporter potentiates growth and retinoic acid-induced differentiation of P19 embryonal carcinoma cells. J Biol Chem 272:26545–26549

    CAS  Google Scholar 

  3. Putney LK, Barber DL (2003) Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J Biol Chem 278:44645–44649

    CAS  Google Scholar 

  4. Fliegel L (2005) The Na+/H + exchanger isoform 1. Int J Biochem Cell Biol 37:33–37

    CAS  Google Scholar 

  5. Hunte C, Screpanti E, Venturi M et al (2005) Structure of a Na+/H + antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    CAS  Google Scholar 

  6. Liang E, Liu P, Dinh S (2007) Use of a pH-sensitive fluorescent probe for measuring intracellular pH of Caco-2 cells. Int J Pharm 338:104–109

    CAS  Google Scholar 

  7. Simpson JE, Walker NM, Supuran CT et al (2010) Putative anion transporter-1 (Pat-1, Slc26a6) contributes to intracellular pH regulation during H + -dipeptide transport in duodenal villous epithelium. Am J Physiol Gastrointest Liver Physiol 298:G683–691

    CAS  Google Scholar 

  8. Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5:317–323

    CAS  Google Scholar 

  9. Wakabayashi I, Poteser M, Groschner K (2006) Intracellular pH as a determinant of vascular smooth muscle function. J Vasc Res 43:238–250

    Google Scholar 

  10. Abad MFC, Di Benedetto G, Magalhaes PJ et al (2004) Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem 279:11521–11529

    CAS  Google Scholar 

  11. Meisenholder GW, Martin SJ, Green DR et al (1996) Events in apoptosis. Acidification is downstream of protease activation and BCL-2 protection. J Biol Chem 271:16260–16262

    CAS  Google Scholar 

  12. Izumi H, Torigoe T, Ishiguchi H et al (2003) Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev 29:541–549

    CAS  Google Scholar 

  13. Carnell L, Moore HP (1994) Transport via the regulated secretory pathway in semi-intact PC12 cells: role of intra-cisternal calcium and pH in the transport and sorting of secretogranin II. J Cell Biol 127:693–705

    CAS  Google Scholar 

  14. Chanat E, Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115:1505–1519

    CAS  Google Scholar 

  15. Puri S, Bachert C, Fimmel CJ et al (2002) Cycling of early Golgi proteins via the cell surface and endosomes upon lumenal pH disruption. Traffic 3:641–653

    CAS  Google Scholar 

  16. Kellokumpu S, Sormunen R, Kellokumpu I (2002) Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH. FEBS Lett 516:217–224

    CAS  Google Scholar 

  17. Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221

    CAS  Google Scholar 

  18. Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533

    CAS  Google Scholar 

  19. Sun HY, Wang NP, Halkos ME et al (2004) Involvement of Na+/H + exchanger in hypoxia/re-oxygenation-induced neonatal rat cardiomyocyte apoptosis. Eur J Pharmacol 486:121–131

    CAS  Google Scholar 

  20. Mellman I, Warren G (2000) The road taken: past and future foundations of membrane traffic. Cell 100:99–112

    CAS  Google Scholar 

  21. Schindler M, Grabski S, Hoff E et al (1996) Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr). Biochemistry 35:2811–2817

    CAS  Google Scholar 

  22. Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709–2728

    CAS  Google Scholar 

  23. Esposito A, Schlachter S, Schierle GS et al (2009) Quantitative fluorescence microscopy techniques. Methods Mol Biol 586:117–142

    CAS  Google Scholar 

  24. Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95:189–196

    CAS  Google Scholar 

  25. Tsien RY (1989) Fluorescent indicators of ion concentrations. Meth Cell Biol 30:127–156

    CAS  Google Scholar 

  26. Bizzarri R, Serresi M, Luin S et al (2009) Green fluorescent protein based pH indicators for in vivo use: a review. Anal Bioanal Chem 393:1107–1122

    CAS  Google Scholar 

  27. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    CAS  Google Scholar 

  28. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  Google Scholar 

  29. Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    CAS  Google Scholar 

  30. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    CAS  Google Scholar 

  31. Miyawaki A (2005) Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48:189–199

    CAS  Google Scholar 

  32. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    CAS  Google Scholar 

  33. Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613

    CAS  Google Scholar 

  34. Zhang J, Campbell RE, Ting AY et al (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    CAS  Google Scholar 

  35. Stepanenko OV, Verkhusha VV, Kuznetsova IM et al (2008) Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes. Curr Protein Pept Sci 9:338–369

    CAS  Google Scholar 

  36. Ibraheem A, Campbell RE (2010) Designs and applications of fluorescent protein-based biosensors. Curr Opin Chem Biol 14:30–36

    CAS  Google Scholar 

  37. Johnson DE, Ai HW, Wong P et al (2009) Red fluorescent protein pH biosensor to detect concentrative nucleoside transport. J Biol Chem 284:20499–20511

    CAS  Google Scholar 

  38. Schulte A, Lorenzen I, Bottcher M et al (2006) A novel fluorescent pH probe for expression in plants. Plant Methods 2:7

    Google Scholar 

  39. Wachter RM (2007) Chromogenic cross-link formation in green fluorescent protein. Acc Chem Res 40:120–127

    CAS  Google Scholar 

  40. Zhang L, Patel HN, Lappe JW et al (2006) Reaction progress of chromophore biogenesis in green fluorescent protein. J Am Chem Soc 128:4766–4772

    CAS  Google Scholar 

  41. Niwa H, Inouye S, Hirano T et al (1996) Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci 93:13617–13622

    CAS  Google Scholar 

  42. Bell AF, He X, Wachter RM et al (2000) Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy. Biochemistry 39:4423–4431

    CAS  Google Scholar 

  43. Dong J, Solntsev KM, Tolbert LM (2006) Solvatochromism of the green fluorescence protein chromophore and its derivatives. J Am Chem Soc 128:12038–12039

    CAS  Google Scholar 

  44. Voityuk AA, Michel-Beyerle ME, Rosch N (1998) Quantum chemical modeling of structure and absorption spectra of the chromophore in green fluorescent proteins. Chem Phys 231:13–25

    CAS  Google Scholar 

  45. Follenius-Wund A, Bourotte M, Schmitt M et al (2003) Fluorescent derivatives of the GFP chromophore give a new insight into the GFP fluorescence process. Biophys J 85:1839–1850

    CAS  Google Scholar 

  46. Litvinenko KL, Webber NM, Meech SR (2001) An ultrafast polarisation spectroscopy study of internal conversion and orientational relaxation of the chromophore of the green fluorescent protein. Chem Phys Lett 346:47–53

    CAS  Google Scholar 

  47. Litvinenko KL, Webber NM, Meech SR (2003) Internal conversion in the chromophore of the green fluorescent protein: temperature dependence and isoviscosity analysis. J Phys Chem A 107:2616–2623

    CAS  Google Scholar 

  48. Patterson GH, Knobel SM, Sharif WD et al (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790

    CAS  Google Scholar 

  49. Sniegowski JA, Phail ME, Wachter RM (2005) Maturation efficiency, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of green fluorescent protein. Biochem Biophys Res Commun 332:657–663

    CAS  Google Scholar 

  50. Cody CW, Prasher DC, Westler WM et al (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32:1212–1218

    CAS  Google Scholar 

  51. Palm GJ, Zdanov A, Gaitanaris GA et al (1997) The structural basis for spectral variations in green fluorescent protein. Nat Struct Biol 4:361–365

    CAS  Google Scholar 

  52. Ormo M, Cubitt AB, Kallio K et al (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    CAS  Google Scholar 

  53. Brejc K, Sixma TK, Kitts PA et al (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci 94:2306–2311

    CAS  Google Scholar 

  54. Kummer AD, Wiehler J, Rehaber H et al (2000) Effects of threonine 203 replacements on excited-state dynamics and fluorescence properties of the green fluorescent protein (GFP). J Phys Chem B 104:4791–4798

    CAS  Google Scholar 

  55. Wachter RM, Yarbrough D, Kallio K et al (2000) Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein. J Mol Biol 301:157–171

    CAS  Google Scholar 

  56. Palm GJ, Wlodawer A (1999) Spectral variants of green fluorescent protein. Meth Enzymol 302:378–394

    CAS  Google Scholar 

  57. Morise H, Shimomura O, Johnson FH et al (1974) Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13:2656–2662

    CAS  Google Scholar 

  58. Webber NM, Litvinenko KL, Meech SR (2001) Radiationless relaxation in a synthetic analogue of the green fluorescent protein chromophore. J Phys Chem B 105:8036–8039

    CAS  Google Scholar 

  59. Ward WW, Bokman SH (1982) Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry 21:4535–4540

    CAS  Google Scholar 

  60. Chattoraj M, King BA, Bublitz GU et al (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci 93:8362–8367

    CAS  Google Scholar 

  61. Lossau H, Kummer A, Heinecke R et al (1996) Time-resolved spectroscopy of wild-type and mutant Green Fluorescent Proteins reveals excited state deprotonation consistent with fluorophore-protein interactions. Chem Phys 213:1–16

    CAS  Google Scholar 

  62. McAnaney TB, Park ES, Hanson GT et al (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics. Biochemistry 41:15489–15494

    CAS  Google Scholar 

  63. Bonsma S, Purchase R, Jezowski S et al (2005) Green and red fluorescent proteins: photo- and thermally induced dynamics probed by site-selective spectroscopy and hole burning. Chemphyschem 6:838–849

    CAS  Google Scholar 

  64. Creemers TM, Lock AJ, Subramaniam V et al (1999) Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning. Nat Struct Biol 6:557–560

    CAS  Google Scholar 

  65. Wiehler J, Jung G, Seebacher C et al (2003) Mutagenic stabilization of the photocycle intermediate of green fluorescent protein (GFP). Chembiochem 4:1164–1171

    CAS  Google Scholar 

  66. Kennis JT, Larsen DS, van Stokkum IH et al (2004) Uncovering the hidden ground state of green fluorescent protein. Proc Natl Acad Sci 101:17988–17993

    CAS  Google Scholar 

  67. Wachter RM, Remington SJ (1999) Sensitivity of the yellow variant of green fluorescent protein to halides and nitrate. Curr Biol 9:R628–629

    CAS  Google Scholar 

  68. McAnaney TB, Zeng W, Doe CF et al (2005) Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10 C): a unifying mechanism. Biochemistry 44:5510–5524

    CAS  Google Scholar 

  69. Biteen JS, Thompson MA, Tselentis NK et al (2008) Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5:947–949

    CAS  Google Scholar 

  70. Stoner-Ma D, Jaye AA, Ronayne KL et al (2008) An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP. J Am Chem Soc 130:1227–1235

    CAS  Google Scholar 

  71. Kneen M, Farinas J, Li Y et al (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599

    CAS  Google Scholar 

  72. Abbruzzetti S, Grandi E, Viappiani C et al (2005) Kinetics of acid-induced spectral changes in the GFPmut2 chromophore. J Am Chem Soc 127:626–635

    CAS  Google Scholar 

  73. Elsliger MA, Wachter RM, Hanson GT et al (1999) Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 38:5296–5301

    CAS  Google Scholar 

  74. Shinobu A, Palm GJ, Schierbeek AJ et al (2010) Visualizing proton antenna in a high-resolution green fluorescent protein structure. J Am Chem Soc 132:11093–11102

    CAS  Google Scholar 

  75. Robey RB, Ruiz O, Santos AV et al (1998) pH-dependent fluorescence of a heterologously expressed Aequorea green fluorescent protein mutant: in situ spectral characteristics and applicability to intracellular pH estimation. Biochemistry 37:9894–9901

    CAS  Google Scholar 

  76. Bizzarri R, Nifosi R, Abbruzzetti S et al (2007) Green fluorescent protein ground states: the influence of a second protonation site near the chromophore. Biochemistry 46:5494–5504

    CAS  Google Scholar 

  77. Hanson GT, McAnaney TB, Park ES et al (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41:15477–15488

    CAS  Google Scholar 

  78. Ullmann GM (2003) Relations between protonation constants and titration curves in polyprotic acids: a critical view. J Phys Chem B 107:1263–1271

    CAS  Google Scholar 

  79. Jayaraman S, Haggie P, Wachter RM et al (2000) Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275:6047–6050

    CAS  Google Scholar 

  80. Griesbeck O, Baird GS, Campbell RE et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194

    CAS  Google Scholar 

  81. Scharnagl C, Raupp-Kossmann R, Fischer SF (1999) Molecular basis for pH sensitivity and proton transfer in green fluorescent protein: protonation and conformational substates from electrostatic calculations. Biophys J 77:1839–1857

    CAS  Google Scholar 

  82. Jung G, Mais S, Zumbusch A et al (2000) The role of dark states in the photodynamics of the green fluorescent protein examined with two-color fluorescence excitation spectroscopy. J Phys Chem A 104:873–877

    CAS  Google Scholar 

  83. Cardarelli F, Bizzarri R, Serresi M et al (2009) Probing nuclear localization signal-importin alpha binding equilibria in living cells. J Biol Chem 284:36638–36646

    CAS  Google Scholar 

  84. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  Google Scholar 

  85. Llopis J, McCaffery JM, Miyawaki A et al (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci 95:6803–6808

    CAS  Google Scholar 

  86. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    CAS  Google Scholar 

  87. Prosser DC, Whitworth K, Wendland B (2008) Quantitative analysis of endocytosis with cytoplasmic pHluorin chimeras. Traffic 11:1141–1150

    Google Scholar 

  88. Jankowski A, Kim JH, Collins RF et al (2001) In situ measurements of the pH of mammalian peroxisomes using the fluorescent protein pHluorin. J Biol Chem 276:48748–48753

    CAS  Google Scholar 

  89. Haupts U, Maiti S, Schwille P et al (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci 95:13573–13578

    CAS  Google Scholar 

  90. Sankaranarayanan S, De Angelis D, Rothman JE et al (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79:2199–2208

    CAS  Google Scholar 

  91. Hess ST, Heikal AA, Webb WW (2004) Fluorescence photoconversion kinetics in novel green fluorescent protein pH sensors (pHluorins). J Phys Chem B 108:10138–10148

    CAS  Google Scholar 

  92. Nakabayashi T, Wang HP, Kinjo M et al (2008) Application of fluorescence lifetime imaging of enhanced green fluorescent protein to intracellular pH measurements. Photochem Photobiol Sci 7:668–670

    CAS  Google Scholar 

  93. Ashby MC, Ibaraki K, Henley JM (2004) It’s green outside: tracking cell surface proteins with pH-sensitive GFP. Trends Neurosci 27:257–261

    CAS  Google Scholar 

  94. Sankaranarayanan S, Ryan TA (2001) Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nat Neurosci 4:129–136

    CAS  Google Scholar 

  95. Wachter RM, Elsliger MA, Kallio K et al (1998) Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 6:1267–1277

    CAS  Google Scholar 

  96. Patterson G, Day RN, Piston D (2001) Fluorescent protein spectra. J Cell Sci 114:837–838

    CAS  Google Scholar 

  97. Karagiannis J, Young PG (2001) Intracellular pH homeostasis during cell-cycle progression and growth state transition in Schizosaccharomyces pombe. J Cell Sci 114:2929–2941

    CAS  Google Scholar 

  98. Orij R, Postmus J, Ter Beek A et al (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155:268–278

    CAS  Google Scholar 

  99. Bohnert S, Schiavo G (2005) Tetanus toxin is transported in a novel neuronal compartment characterized by a specialized pH regulation. J Biol Chem 280:42336–42344

    CAS  Google Scholar 

  100. Morimoto YV, Che YS, Minamino T et al (2010) Proton-conductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pHluorin expressed in Salmonella. FEBS Lett 584:1268–1272

    CAS  Google Scholar 

  101. Machen TE, Leigh MJ, Taylor C et al (2003) pH of TGN and recycling endosomes of H+/K + -ATPase-transfected HEK-293 cells: implications for pH regulation in the secretory pathway. Am J Physiol 285:C205–214

    CAS  Google Scholar 

  102. Shu X, Leiderman P, Gepshtein R et al (2007) An alternative excited-state proton transfer pathway in green fluorescent protein variant S205V. Protein Sci 16:2703–2710

    CAS  Google Scholar 

  103. Shu X, Kallio K, Shi X et al (2007) Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 1. Mutagenesis and structural studies. Biochemistry 46:12005–12013

    CAS  Google Scholar 

  104. Cody SH, Dubbin PN, Beischer AD et al (1993) Intracellular pH mapping with Snarf-1 and confocal microscopy.1. A quantitative technique for living tissues and isolated cells. Micron 24:573–580

    Google Scholar 

  105. Dubbin PN, Cody SH, Williams DA (1993) Intracellular pH mapping with Snarf-1 and confocal microscopy.2. Ph gradients within single cultured-cells. Micron 24:581–586

    Google Scholar 

  106. Bizzarri R, Arcangeli C, Arosio D et al (2006) Development of a novel GFP-based ratiometric excitation and emission pH indicator for intracellular studies. Biophys J 90:3300–3314

    CAS  Google Scholar 

  107. Serresi M, Bizzarri R, Cardarelli F et al (2009) Real-time measurement of endosomal acidification by a novel genetically encoded biosensor. Anal Bioanal Chem 393:1123–1133

    CAS  Google Scholar 

  108. Marcello A, Lusic M, Pegoraro G et al (2004) Nuclear organization and the control of HIV-1 transcription. Gene 326:1–11

    CAS  Google Scholar 

  109. Arosio D, Garau G, Ricci F et al (2007) Spectroscopic and structural study of proton and halide ion cooperative binding to gfp. Biophys J 93:232–244

    CAS  Google Scholar 

  110. Arosio D, Ricci F, Marchetti L et al (2010) Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat Methods 7:516–518

    CAS  Google Scholar 

  111. Awaji T, Hirasawa A, Shirakawa H et al (2001) Novel green fluorescent protein-based ratiometric indicators for monitoring pH in defined intracellular microdomains. Biochem Biophys Res Commun 289:457–462

    CAS  Google Scholar 

  112. Chan FK, Siegel RM, Zacharias D et al (2001) Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein. Cytometry 44:361–368

    CAS  Google Scholar 

  113. Wlodarczyk J, Woehler A, Kobe F et al (2008) Analysis of FRET signals in the presence of free donors and acceptors. Biophys J 94:986–1000

    CAS  Google Scholar 

  114. Urra J, Sandoval M, Cornejo I et al (2008) A genetically encoded ratiometric sensor to measure extracellular pH in microdomains bounded by basolateral membranes of epithelial cells. Pflugers Arch 457:233–242

    CAS  Google Scholar 

  115. Tsien RY (2003) Imagining imaging’s future. Nat Rev Mol Cell Biol (Suppl): SS16–SS21

    Google Scholar 

  116. Paddock S (2008) Over the rainbow: 25 years of confocal imaging. BioTechniques 44:643–644, 646, 648

    Google Scholar 

  117. Diaspro A, Bianchini P, Vicidomini G et al (2006) Multi-photon excitation microscopy. Biomed Eng Online 5:36

    Google Scholar 

  118. Digman MA, Dalal R, Horwitz AF et al (2008) Mapping the number of molecules and brightness in the laser scanning microscope. Biophys J 94:2320–2332

    CAS  Google Scholar 

  119. Petty HR (2007) Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology. Microsc Res Tech 70:687–709

    Google Scholar 

  120. Diaspro A, Robello M (2000) Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures. J Photochem Photobiol B Biol 55:1–8

    CAS  Google Scholar 

  121. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    CAS  Google Scholar 

  122. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    CAS  Google Scholar 

  123. Albota M, Beljonne D, Bredas JL et al (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281:1653–1656

    CAS  Google Scholar 

  124. Albota MA, Xu C, Webb WW (1998) Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Opt 37:7352–7356

    CAS  Google Scholar 

  125. Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B: Opt Phys 13:481–491

    CAS  Google Scholar 

  126. Drobizhev M, Tillo S, Makarov NS et al (2009) Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins. J Phys Chem B 113:855–859

    CAS  Google Scholar 

  127. Bestvater F, Spiess E, Stobrawa G et al (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. Journal Microsc-Oxford 208:108–115

    CAS  Google Scholar 

  128. Chirico G, Cannone F, Diaspro A et al (2004) Multiphoton switching dynamics of single green fluorescent proteins. Phys Rev E 70:030901

    CAS  Google Scholar 

  129. Hosoi H, Yamaguchi S, Mizuno H et al (2008) Hidden electronic excited state of enhanced green fluorescent protein. J Phys Chem B 112:2761–2763

    CAS  Google Scholar 

  130. Roorda RD, Hohl TM, Toledo-Crow R et al (2004) Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J Neurophysiol 92:609–621

    Google Scholar 

  131. Sonnleitner A, Schutz GJ, Schmidt T (1999) Free brownian motion of individual lipid molecules in biomembranes. Biophys J 77:2638–2642

    CAS  Google Scholar 

  132. Jovin TM, Striker G (1977) Chemical relaxation kinetic studies of E. coli RNA polymerase binding to poly [d(A–T)] using ethidium bromide as a fluorescence probe. Mol Biol Biochem Biophys 24:245–281

    CAS  Google Scholar 

  133. Digman MA, Brown CM, Sengupta P et al (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89:1317–1327

    CAS  Google Scholar 

  134. Cardarelli F, Serresi M, Bizzarri R et al (2008) Tuning the transport properties of HIV-1 Tat arginine-rich motif in living cells. Traffic 9:528–539

    CAS  Google Scholar 

  135. Cardarelli F, Serresi M, Bizzarri R et al (2007) In vivo study of HIV-1 Tat arginine-rich motif unveils its transport properties. Mol Ther 15:1313–1322

    CAS  Google Scholar 

  136. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355

    CAS  Google Scholar 

  137. Charier S, Meglio A, Alcor D et al (2005) Reactant concentrations from fluorescence correlation spectroscopy with tailored fluorescent probes. An example of local calibration-free pH measurement. J Am Chem Soc 127:15491–15505

    CAS  Google Scholar 

  138. Widengren J, Terry B, Rigler R (1999) Protonation kinetics of GFP and FITC investigated by FCS – aspects of the use of fluorescent indicators for measuring pH. Chem Phys 249:259–271

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranieri Bizzarri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bizzarri, R. (2011). The Proton Sensitivity of Fluorescent Proteins: Towards Intracellular pH Indicators. In: Jung, G. (eds) Fluorescent Proteins II. Springer Series on Fluorescence, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_30

Download citation

Publish with us

Policies and ethics