Skip to main content

Effects of elevated carbon dioxide concentration on wood structure and formation in trees

  • Conference paper
Plant Responses to Air Pollution and Global Change

Summary

The effects of elevated carbon dioxide concentration ([CO2]) on the structure of xylem cells in trees have not yet been clarified, in spite of the importance of woody plants as large, long-term carbon sinks. We review recent studies that have investigated how elevated [CO2] affects growth ring features. In general, elevated [CO2] enhances radial growth, especially when sufficient nutrients are supplied. The mean density of growth rings also increased but sometimes it decreased or remained unchanged, depending on the extent of cell division, cell expansion and cell wall thickening under elevated [CO2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam NR, Wall GW, Kimball BA, Idso BS, Webber AN (2004) Photosynthetic down-regulation over long-term CO2 enrichment in leaves of sour orange (Citrus aurantium) trees. New Phytol 163:341–347

    Article  Google Scholar 

  • Atkinson CJ, Taylor JM (1996) Effects of elevated CO2 on stem growth, vessel area and hydraulic conductivity of oak and cherry seedlings. New Phytol 133:617–626

    Article  Google Scholar 

  • Atwell BJ, Henery ML, Whitehead D (2003) Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures. Tree Physiol 23:13–21

    PubMed  CAS  Google Scholar 

  • Beismann H, Schweingruber F, Speck T, Körner C (2002) Mechanical properties of spruce and beech wood grown in elevated CO2. Trees 16:511–518

    Article  CAS  Google Scholar 

  • Calfapietra C, Gielen B, Galema ANJ, Lukac M, De Angelis P, Moscatelli MC, Ceulemans R, Scarascia-Mugnozza G (2003) Free-air CO2 enrichment (FACE) enhances biomass production in a shoot-rotation poplar plantation. Tree Physiol 23:805–814

    PubMed  CAS  Google Scholar 

  • Centritto M, Lee HSJ, Jarvis PG (1999) Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). I. Plant growth, allocation and ontogeny. Tree Physiol 19:799–806

    PubMed  Google Scholar 

  • Ceulemans R, Jach ME, Van De Velde R, Lin JX, Stevens M (2002) Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L) after three years of enrichment. Global Change Biol 8:153–162

    Article  Google Scholar 

  • Conroy JP, Milham PJ, Mazur M, Barlow EWR (1990) Growth, dry weight partitioning and wood properties of Pinus radiata D.Don after 2 years of CO2 enrichment. Plant Cell Environ 13:329–337

    Article  Google Scholar 

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • Denne MP, Dodd RS (1981) The environmental control of xylem differentiation. In: Barnett JR (ed.) Xylem cell development, Castle House Publications, pp 236–255

    Google Scholar 

  • Doley D, Leyton L (1968) Effects of growth regulating substances and water potential on the development of secondary xylem in Fraxinus. New Phytol 67:579–594

    Article  CAS  Google Scholar 

  • Donaldson LA, Hollinger D, Middleton TM, Souter ED (1987) Effect of CO2 enrichment on wood structure in Pinus radiata D Don. IAWA Bulletin new series 8:285–289

    Google Scholar 

  • Eguchi N, Fukatsu E, Funada R, Tobita H, Kitao M, Maruyama Y, Koike T (2004) Changes in morphology, anatomy, and photosynthetic capacity of needles of Japanese larch (Larix kaempferi) seedlings grown in high CO2 concentration. Photosynthetica 42:173–178

    Article  CAS  Google Scholar 

  • Funada R, Kubo T, Fushitani M (1990) Early-and latewood formation in Pinus densiflora trees with different amounts of crown. IAWA Bulletin n.s. 11:281–288

    Google Scholar 

  • Funada R, Kubo T, Tabuchi M, Sugiyama T, Fushitani M (2001) Seasonal variations in endogenous indole-3-acetic acid and abscisic acid in the cambial region of Pinus densiflora Sieb. et Zucc. stems in relation to earlywood-latewood transition and cessation of tracheid production. Holzforschung 55:128–134

    Article  CAS  Google Scholar 

  • Gartner BL, Roy J, Huc R (2003) Effects of tension wood on specific conductivity and vulnerability to embolism of Quercus ilex seedling grown at two atmospheric CO2 concentration. Tree Physiol 23:387–395

    PubMed  Google Scholar 

  • Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Global Change Biol 3:463–471

    Article  Google Scholar 

  • Hättenschwiler S, Schweingruber FH, Körner C (1996) Tree ring responses to elevated CO2 and increased N deposition in Picea abies. Plant Cell Environ 19:1369–1378

    Article  Google Scholar 

  • Jach ME, Ceulemans R (1999) Effects of elevated atmospheric CO2 on phenology, growth and crown structure of Scots pine (Pinus sylvestris) seedlings after two years of exposure in the field. Tree Physiol 19:289–300

    PubMed  Google Scholar 

  • Kaakinen S, Kostiainen K, Fredrik E, Saranpää P, Kubiske ME, Sober J, Karnosky DF, Vapaavuori E (2004) Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after 3 years of treatments to elevated carbon dioxide and ozone. Global Change Biol. 10:1513–1525

    Article  Google Scholar 

  • Kilpeläinen A, Peltola H, Ryyppö A, Sauvala K, Laitinen K, Kellomäki S (2003) Wood properties of Scot pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiol 23:889–897

    PubMed  Google Scholar 

  • Kinsman EA, Lewis C, Davies MS, Young JE, Francis D, Thomas ID, Chorlton KH, Ougham HJ (1996) Effects of temperature and elevated CO2 on cell division in shoot meristems: differential responses of two natural populations of Dactylis glomerata L. Plant Cell Environ 19:775–780

    Article  Google Scholar 

  • Koike T, Kohda H, Mori S, Takahashi K, Inoue MT, Lei TT (1995) Growth responses of the cuttings of two willow species to elevated CO2 and temperature. Plant Species Biol. 10:95–101

    Article  Google Scholar 

  • Koike T, Mori S, Takahashi K, Lei TT (1996) Effects of high CO2 on the shoot growth and photosynthetic capacity of seedlings of Sakhalin fir and Monarch birch native to northern Japan. Environ Sci 4:93–102

    Google Scholar 

  • Maherali H, DeLucia EH (2000) Interactive effects of elevated CO2 and temperature on water transport in ponderosa pine. Amer J Bot 87:243–249

    Article  Google Scholar 

  • Norby RJ, Todd DE, Fults J, Johnson DW (2001) Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytol 150:477–487

    Article  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 410:469–471

    Article  Google Scholar 

  • Peltola H, Kilpeläinen A, Kellomäki S (2002) Diameter growth of Scots pine (Pinus sylvestrils) trees grown at elevated temperature and carbon dioxide concentration under boreal conditions. Tree Physiol 22:963–972

    PubMed  Google Scholar 

  • Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO2 and plant structure: a review. Global Change Biol 5:807–837

    Article  Google Scholar 

  • Roberntz P (1999) Effects of long-term CO2 enrichment and nutrient availability in Norway spruce. I. Phenology and morphology of branches. Trees 13:188–198

    Google Scholar 

  • Sigurdsson BD (2001) Elevated [CO2] and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a 3-year field study. Trees 15:403–413

    Article  Google Scholar 

  • Telewski FW, Swanson RT, Strain BR, Burns J M (1999) Wood properties and ring width responses to long-term atmospheric CO2 enrichment in field-grown loblolly pine (Pinus taeda L.). Plant Cell Environ 22:213–219

    Article  Google Scholar 

  • Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentration. New Phytol 146:59–74

    Article  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2-implications for water-limited environment. Plant Cell Environ 25:319–331

    Article  PubMed  Google Scholar 

  • Yasue K, Funada R, Kobayashi O, Ohtani J (2000) The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees 14:223–229

    Article  Google Scholar 

  • Yazaki K, Funada R, Mori S, Maruyama Y, Abaimov AP, Kayama M, Koike T (2001) Growth and annual ring structure of Larix sibirica grown at different carbon dioxide concentrations and nutrient supply rates. Tree Physiol 21:1223–1229

    PubMed  CAS  Google Scholar 

  • Yazaki K, Ishida S, Kawagishi T, Fukatsu E, Maruyama Y, Kitao M, Tobita H, Koike T, Funada R (2004) Effects of elevated CO2 concentration on growth, annual ring structure and photosynthesis in Larix kaempferi seedlings. Tree Physiol 24:941–949

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this paper

Cite this paper

Yazaki, K., Maruyama, Y., Mori, S., Koike, T., Funada, R. (2005). Effects of elevated carbon dioxide concentration on wood structure and formation in trees. In: Omasa, K., Nouchi, I., De Kok, L.J. (eds) Plant Responses to Air Pollution and Global Change. Springer, Tokyo. https://doi.org/10.1007/4-431-31014-2_11

Download citation

Publish with us

Policies and ethics