Skip to main content

Metal Toxicity and Resistance in Plants and Microorganisms in Terrestrial Ecosystems

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 249

Abstract

Metals are major abiotic stressors of many organisms, but their toxicity in plants is not as studied as in microorganisms and animals. Likewise, research in plant responses to metal contamination is sketchy. Candidate genes associated with metal resistance in plants have been recently discovered and characterized. Some mechanisms of plant adaptation to metal stressors have been now decrypted. New knowledge on microbial reaction to metal contamination and the relationship between bacterial, archaeal, and fungal resistance to metals has broadened our understanding of metal homeostasis in living organisms. Recent reviews on metal toxicity and resistance mechanisms focused only on the role of transcriptomics, proteomics, metabolomics, and ionomics. This review is a critical analysis of key findings on physiological and genetic processes in plants and microorganisms in responses to soil metal contaminations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

γ-GC:

Gamma-glutamylcysteine

ABC:

ATP-binding cassette

ACC:

1-Aminocyclopropane-1-carboxylic acid deaminase

Ag:

Silver

AM:

Arbuscular mycorrhizal fungi

APX:

Ascorbate peroxidase

As:

Arsenic

ATP:

Adenosine triphosphate

CAT:

Catalases

Cd:

Cadmium

CDF:

Cation diffusion facilitator

CEC:

Cation exchange capacity

Co:

Cobalt

COPT:

Copper transporter

Cu:

Copper

CzcABC:

Cation-proton antiporter

ECM:

Ectomycorrhizal fungi

EPS:

Exopolysaccharides

Fe:

Iron

GCS:

γ-Glutamyl-Cys synthetase

GR:

Glutathione reductase

GS:

Glutathione synthetase

GSH:

Glutathione

GST:

Glutathione-s-transferase

H2O2:

Hydrogen peroxide

Hg:

Mercury

HgCl2:

Mercuric chloride

HMA:

Heavy metal ATPase

IREG:

Iron-regulated proteins

IRT:

Iron-regulated transporter

K:

Potassium

Mg:

Magnesium

Mn:

Manganese

MRP:

Multidrug resistance-associated proteins

MT:

Metallothionein

MTP:

Metal tolerance proteins

NA:

Nicotianamine

Na:

Sodium

NADPH:

Nicotinamide adenine dinucleotide phosphate

NAS:

Nicotianamine synthase

Ni:

Nickel

NRAMP:

Natural resistance-associated macrophage proteins

O2:

Oxygen

OAS:

O-acetyl-l-serine

OH:

Hydroxyl radical

Pb:

Lead

PC:

Phytochelatin

ROS:

Reactive oxygen species

S:

Sulfur

SAT:

Serine acetyltransferase

SOD:

Superoxide dismutase

TMP:

Putative transporter protein

Trr:

Thioredoxin reductase

Ur:

Uranium

ZAT:

Zinc finger protein

ZIP:

ZRT, IRT-like proteins

Zn:

Zinc

References

  • Abdu N, Abdullahi AA, Abdulkadir A (2017) Heavy metals and soil microbes. Environ Chem Lett 15:65–84

    CAS  Google Scholar 

  • Ahmad I, Hayat S, Pichtel J (2005) Heavy metal contamination of soil: problems and remedies. Science Publishers, Enfield

    Google Scholar 

  • Alloway BJ (2014) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, 3rd edn. Springer, Dordrecht

    Google Scholar 

  • Anand M, Ma K-M, Okonski A et al (2003) Characterising biocomplexity and soil microbial dynamics along a smelter-damaged landscape gradient. Sci Total Environ 311:247–259

    CAS  Google Scholar 

  • Avery SV (2001) Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49:111–142

    CAS  Google Scholar 

  • Aydinalp C, Marinova S (2003) Distribution and forms of heavy metals in some agricultural soils. Pol J Environ Stud 12:629–633

    CAS  Google Scholar 

  • Baloun J, Nevrtalova E, Kovacova V et al (2014) Characterization of the HMA7 gene and transcriptomic analysis of candidate genes for copper tolerance in two Silene vulgaris ecotypes. J Plant Physiol 171:1188–1196

    CAS  Google Scholar 

  • Barberon M, Zelazny E, Robert S et al (2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci 108:450–458

    Google Scholar 

  • Bellion M, Courbot M, Jacob C et al (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    CAS  Google Scholar 

  • Bingham F, Pereyea F, Jarrell W (1986) Metal toxicity to agricultural crops. Met Ions Biol Syst 20:119–156

    CAS  Google Scholar 

  • Bini E (2010) Archaeal transformation of metals in the environment. FEMS Microbiol Ecol 73:1–16

    CAS  Google Scholar 

  • Bourg ACM (1995) Speciation of heavy metals in soils and groundwater and implications for their natural and provoked mobility. In: Förstner U, Salomons W, Mader P (eds) Heavy metals. Springer, Berlin, pp 19–31

    Google Scholar 

  • Bovet L, Eggmann T, Meylan-Bettex M et al (2003) Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell Environ 26:371–381

    CAS  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE et al (2009) Copper homeostasis. New Phytol 182:799–816

    CAS  Google Scholar 

  • Burton KW, Morgan E, Roig A (1983) The influence of heavy metals upon the growth of sitka-spruce in South Wales forests. Plant Soil 73:327–336

    CAS  Google Scholar 

  • Chandrangsu P, Rensing C, Helmann JD (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15:338–350

    CAS  Google Scholar 

  • Chen J, Yang L, Gu J et al (2015) MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana. New Phytol 205:570–582

    CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione deficient, cadmium sensitive mutant, cad2–1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16:73–78

    CAS  Google Scholar 

  • Cuypers A, Remans T, Weyens N et al (2013) Soil-plant relationships of heavy metals and metalloids. In: Alloway BJ (ed) Heavy metals in soils. Springer, Dordrecht, pp 161–193

    Google Scholar 

  • Czajka KM, Nkongolo K, Czajka KM, Nkongolo K (2018) High level of nicotianamine synthase (NAS3) and natural resistance associated macrophage protein (NRAMP4) gene transcription induced by potassium nitrate in trembling aspen (Populus tremuloides). Am J Biochem Biotechnol 14:183–190

    Google Scholar 

  • Das R, Jayalekshmy VG (2015) Mechanism of heavy metal tolerance and improvement of tolerance in crop plants. J Glob Biosci 4:2678–2698

    Google Scholar 

  • DasSarma S, Capes M, DasSarma P (2009) Haloarchaeal megaplasmids. In: Schwartz E (ed) Microbial megaplasmids. Springer, Berlin, pp 3–30

    Google Scholar 

  • Deng X, He J, He N (2013) Comparative study on Ni2+-affinity transport of nickel/cobalt permeases (NiCoTs) and the potential of recombinant Escherichia coli for Ni2+ bioaccumulation. Bioresour Technol 130:69–74

    CAS  Google Scholar 

  • Dixon RK, Buschena CA (1988) Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105:265–271

    CAS  Google Scholar 

  • Djeukam CL, Nkongolo K (2018) Expression of genes associated with nickel resistance in red oak (Quercus rubra) populations from a metal contaminated region. Bull Environ Contam Toxicol 100:792–797

    CAS  Google Scholar 

  • Djeukam CL, Theriault G, Michael P, Nkongolo KK (2016) Analysis of gene expression associated with copper toxicity in white birch (Betula papyrifera) populations from a mining region. Br Biotechnol J 15:1–10

    Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970

    CAS  Google Scholar 

  • Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692. https://doi.org/10.1007/s002530051116

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1–18

    Google Scholar 

  • Fahey RC (2001) Novel thiols of prokaryotes. Annu Rev Microbiol 55:333–356

    CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K et al (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    CAS  Google Scholar 

  • Freeman JL, Garcia D, Kim D et al (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    CAS  Google Scholar 

  • Gajewska E, SkÅ‚odowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54:179–188

    CAS  Google Scholar 

  • González C, Yanquepe M, Cardenas JP et al (2014) Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis. Res Microbiol 165:726–734

    Google Scholar 

  • Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86:6838–6842

    CAS  Google Scholar 

  • Gunn JM, Beckett PJ, Lautenback WE, Monet S (2007) Sudbury, Canada: from pollution record holder to award winning restoration site. In: France RL (ed) Handbook of regenerative landscape design. CRC Press, Boca Raton, pp 381–405

    Google Scholar 

  • Guo W, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381

    CAS  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  Google Scholar 

  • Harrison JJ, Turner RJ, Ceri H (2009) Metal tolerance in bacterial biofilms. Recent Res Dev Microbiol 9:33–55

    Google Scholar 

  • Hasegawa I, Terada E, Sunairi M et al (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196:227–281

    Google Scholar 

  • Hassan Z, Aarts MGM (2011) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 72:53–63

    CAS  Google Scholar 

  • Henry JR (2000) An overview of the phytoremediation of lead and mercury. EPA, Washington

    Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N et al (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383–393

    CAS  Google Scholar 

  • Hohl H, Varma A (2010) Soil: the living matrix. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Berlin, pp 1–18

    Google Scholar 

  • Hughes MN, Poole RK (1989) Metals and microorganisms. Chapman and Hall, London

    Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    CAS  Google Scholar 

  • Kalubi KN, Michael P, Omri A (2018) Analysis of gene expression in red maple (Acer rubrum) and trembling aspen (Populus tremuloides) populations from a mining region. Genes Genom 40:1127–1136

    CAS  Google Scholar 

  • Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Berlin, pp 31–63

    Google Scholar 

  • Karelová E, Harichová J, Stojnev T et al (2011) The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site. Biologia 66:18–26

    Google Scholar 

  • Kaur A, Pan M, Meislin M et al (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854

    CAS  Google Scholar 

  • Keinanen SI, Hassinen VH, Karenlampi SO, Tervahauta AI (2007) Isolation of genes up-regulated by copper in a copper-tolerant birch (Betula pendula) clone. Tree Physiol 27:1243–1252

    CAS  Google Scholar 

  • Kim H, Seo Y (2012) Identification of potential molecular biomarkers in response to thioredoxin reductase 1 deficiency under nickel exposure. Biochip J 6:157–164

    Google Scholar 

  • Kim S, Takahashi M, Higuchi K et al (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818

    CAS  Google Scholar 

  • Kim Y-N, Kim J-S, Seo S-G et al (2011) Cadmium resistance in tobacco plants expressing the MuSI gene. Plant Biotechnol 5:323–329

    Google Scholar 

  • Kobayashi Y, Hoekenga OA, Itoh H et al (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145:843–852

    CAS  Google Scholar 

  • Kobayashi Y, Kuroda K, Kimura K et al (2008) Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant Physiol 148:969–980

    CAS  Google Scholar 

  • Konlechner C, TürktaÅŸ M, Langer I et al (2013) Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics. Environ Pollut 178:121–127

    CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM et al (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2016) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 24:39–51

    CAS  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffré T (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochemistry 16:1503–1505

    CAS  Google Scholar 

  • Lee J, Bae H, Jeong J et al (2003) Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol 133:589–596

    CAS  Google Scholar 

  • Lee J, Donghwan S, Won-yong S et al (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol 54:805–815

    CAS  Google Scholar 

  • Lemaire S, Guillon B, Le Marechal P et al (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 101:7475–7480

    CAS  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    CAS  Google Scholar 

  • Liu X-M, An J, Han H et al (2014) ZAT11, a zinc finger transcription factor, is a negative regulator of nickel ion tolerance in Arabidopsis. Plant Cell Rep 33:2015–2021

    CAS  Google Scholar 

  • Lv Y, Deng X, Quan L et al (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367:507–519

    CAS  Google Scholar 

  • Makela M, Michael P, Theriault G, Nkongolo KK (2016) High genetic variation among closely related red oak (Quercus rubra) populations in an ecosystem under metal stress: analysis of gene regulation. Genes Genom 38:967–976

    CAS  Google Scholar 

  • Malki L, Yanku M, Borovok I et al (2009) Identification and characterization of gshA, a gene encoding the glutamate-cysteine ligase in the halophilic archaeon Haloferax volcanii. J Bacteriol 191:5196–5204

    CAS  Google Scholar 

  • Manasi, Rajesh N, Rajesh V (2016) Evaluation of the genetic basis of heavy metal resistance in an isolate from electronic industry effluent. J Genet Eng Biotechnol 14:177–180

    CAS  Google Scholar 

  • Mari S, Gendre D, Pianelli K et al (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122

    CAS  Google Scholar 

  • Maron LG, Guimaraes CT, Kirst M et al (2013) Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc Natl Acad Sci U S A 110:5241–5246

    CAS  Google Scholar 

  • Martínez-Bussenius C, Navarro CA, Jerez CA (2017) Microbial copper resistance: importance in biohydrometallurgy. Microb Biotechnol 10:279–295

    Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    CAS  Google Scholar 

  • Mehes-Smith M, Nkongolo KK (2015) Physiological and cytological responses of Deschampsia cespitosa and Populus tremuloides to soil metal contamination. Water Air Soil Pollut 226:1–12

    CAS  Google Scholar 

  • Mehes-Smith M, Nkongolo K, Cholewa E (2013) Coping mechanisms of plants to metal contaminated soil. In: Silvern S, Young S (eds) Environmental change and sustainability. InTech, Rijeka, pp 1–39

    Google Scholar 

  • Mehrotra VS (2005) Mycorrhiza: role and applications. Allied Publishers, New Delhi

    Google Scholar 

  • Mengoni A, Gonnelli C, Hakvoort HWJ et al (2003) Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant Soil 257:451–457

    CAS  Google Scholar 

  • Mitchell R, Gu J-D (2009) Environmental microbiology. Wiley, Hoboken

    Google Scholar 

  • Mittal D, Madhyastha DA, Grover A (2012) Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS One 7:e40899

    CAS  Google Scholar 

  • Mizuno T, Usui K, Horie K et al (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni 2+-transport abilities. Plant Physiol Biochem 43:793–801

    CAS  Google Scholar 

  • Mühlbachová G, TlustoÅ¡ P (2006) Effects of liming on the microbial biomass and its activities in soils long-term contaminated by toxic elements. Plant Soil Environ 52:345–352

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Navarro CA, von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46:363–371

    Google Scholar 

  • Orell A, Navarro CA, Arancibia R et al (2010) Life in blue: copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848

    CAS  Google Scholar 

  • Pennanen T, Fritze H, Vanhala P, Kiikkilä O (1998) Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Appl Environ Microbiol 64:2173–2180

    CAS  Google Scholar 

  • Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011:1–13

    Google Scholar 

  • Prasad MNV (2014) Metallothioneins, metal binding complexes and metal sequestration in plants. In: Heavy metal stress in plants. Springer, Berlin, pp 47–83

    Google Scholar 

  • Proulx M, Michael P, Djeukam C, Nkongolo K (2017) Differential gene transcription in red oak (Quercus rubra) genotypes resistant to copper toxicity. Am J Biochem Biotechnol 13:215–225

    Google Scholar 

  • Rademacher C, Masepohl B (2012) Copper-responsive gene regulation in bacteria. Microbiology 158:2451–2464

    CAS  Google Scholar 

  • Rajapaksha RMCP, Bååth E, Ba E (2004) Metal toxicity affects fungal and bacterial activities in soil differently metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973

    CAS  Google Scholar 

  • Ramesh G, Podila GK, Gay G et al (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Environ Microbiol 75:2266–2274

    CAS  Google Scholar 

  • Rauser WE, Curvetto NR (1980) Metallothionein occurs in roots of Agrostis tolerant to excess copper. Nature 287:563–564

    CAS  Google Scholar 

  • Rea PA (1999) MRP subfamily ABC transporters from plants and yeast. J Exp Bot 50:895–913

    CAS  Google Scholar 

  • Reindel S, Anemüller S, Sawaryn A, Matzanke BF (2002) The DpsA-homologue of the archaeon Halobacterium salinarum is a ferritin. Biochim Biophys Acta 1598:140–146

    CAS  Google Scholar 

  • Ren Y, Zhao J (2009) Functional analysis of the rice metallothionein gene OsMT2b promoter in transgenic Arabidopsis plants and rice germinated embryos. Plant Sci 176:528–538

    CAS  Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA et al (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144

    Google Scholar 

  • Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327

    CAS  Google Scholar 

  • Ryan PR, Raman H, Gupta S et al (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    CAS  Google Scholar 

  • Sancenón V, Puig S, Mira H et al (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587

    Google Scholar 

  • Sancenon V, Puig S, Mateu-Andres I et al (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355

    CAS  Google Scholar 

  • Saraswat S, Rai JPN (2011) Mechanism of metal tolerance and detoxification in mycorrhizal fungi. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils. Springer, Dordrecht, pp 225–240

    Google Scholar 

  • Schaaf G, Honsbein A, Meda AR et al (2006) AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. J Biol Chem 281:25532–25540

    CAS  Google Scholar 

  • Schultz CL, Hutchinson TC (1988) Evidence against a key role for metallothionein like protein in the copper tolerance mechanism of Deschampsia cespitosa (L.) Beauv. New Phytol 110:163–171

    CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    CAS  Google Scholar 

  • Sherameti I, Varma A (2015) Heavy metal contamination of soils: monitoring and remediation. Springer, New York

    Google Scholar 

  • Shojima S, Nishizawa N-K, Fushiya S et al (1990) Biosynthesis of phytosiderophores in vitro biosynthesis of 2′-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol 93:1497–1503

    CAS  Google Scholar 

  • Singh S, Parihar P, Singh R et al (2015) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    Google Scholar 

  • Song W-Y, Martinoia E, Lee J et al (2004) A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039

    CAS  Google Scholar 

  • Song J, Feng SJ, Chen J et al. (2017) A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC Plant Biol 17:187. https://doi.org/10.1186/s12870-017-1141-0

    Google Scholar 

  • Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea 2013:1–16

    Google Scholar 

  • Stearns JC, Shah S, Greenberg BM et al (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708

    CAS  Google Scholar 

  • Sundquist AR, Fahey RC (1989) The function of gamma-glutamylcysteine and bis-gamma-glutamylcysteine reductase in Halobacterium halobium. J Biol Chem 264:719–725

    CAS  Google Scholar 

  • Tanaka Y, Tsumoto K, Nakanishi T et al (2004) Structural implications for heavy metal-induced reversible assembly and aggregation of a protein: the case of Pyrococcus horikoshii CutA. FEBS Lett 556:167–174

    CAS  Google Scholar 

  • Theriault G, Nkongolo K (2016) Nickel and copper toxicity and plant response mechanisms in white birch (Betula papyrifera). Bull Environ Contam Toxicol 97:171–176

    CAS  Google Scholar 

  • Theriault G, Nkongolo KK (2017) Evidence of prokaryote like protein associated with nickel resistance in higher plants: horizontal transfer of TonB-dependent receptor/protein in Betula genus or de novo mechanisms? Heredity (Edinb) 118:358–365

    CAS  Google Scholar 

  • Theriault G, Michael P, Nkongolo K (2016a) Decrypting the regulation and mechanism of nickel resistance in white birch (Betula papyrifera) using cross-species metal-resistance genes. Genes Genom 38:341–350

    CAS  Google Scholar 

  • Theriault G, Michael P, Nkongolo K (2016b) Comprehensive transcriptome analysis of response to nickel stress in white birch (Betula papyrifera). PLoS One 11:1–20

    Google Scholar 

  • Tong Y-P, Kneer R, Zhu Y-G (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    CAS  Google Scholar 

  • Usadel B, Blasing OE, Gibon Y et al (2008) Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes. Plant Physiol 146:1834–1861

    CAS  Google Scholar 

  • USDA NRCS (2000) Heavy metal soil contamination. Soil quality – urban technical notice 3. USDA NRCS, Auburn

    Google Scholar 

  • Valdes J, Ossandon F, Quatrini R et al (2011) Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. J Bacteriol 193:7003–7004

    CAS  Google Scholar 

  • van de Mortel JE, Villanueva LA, Schat H et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Google Scholar 

  • van der Zaal B, Neuteboom L, Pinas J et al (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Google Scholar 

  • van Hoof NALM, Hassinen VH, Hakvoort HWJ et al (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol 126:1519–1526

    Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F et al (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:1–12

    CAS  Google Scholar 

  • Visioli G, Vincenzi S, Marmiroli M, Marmiroli N (2012) Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea caerulescens subsp. caerulescens. Environ Exp Bot 77:156–164

    CAS  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S et al (2004a) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194

    CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004b) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  Google Scholar 

  • Wang D, Wei Z, Yang C, Liu G (2008) Analysis and identification of SCAR molecular markers associated with birch fiber length trait. J For Res 19:288–292

    CAS  Google Scholar 

  • Wen Q, Liu X, Wang H, Lin J (2014) A versatile and efficient markerless gene disruption system for Acidithiobacillus thiooxidans: application for characterizing a copper tolerance related multicopper oxidase gene. Environ Microbiol 16:3499–3514

    CAS  Google Scholar 

  • Wheaton G, Counts J, Mukherjee A et al (2015) The confluence of heavy metal biooxidation and heavy metal resistance: implications for bioleaching by extreme thermoacidophiles. Fortschr Mineral 5:397–451

    CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta Biomembr 1465:104–126

    CAS  Google Scholar 

  • Winterhalder K (1996) Environmental degradation and rehabilitation of the landscape around Sudbury, a major mining and smelting area. Environ Rev 4:185–224

    CAS  Google Scholar 

  • Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12:443–455

    CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    CAS  Google Scholar 

  • Yu R, Tang Y, Liu C et al (2017) Comparative transcriptomic analysis reveals the roles of ROS scavenging genes in response to cadmium in two pak choi cultivars. Sci Rep 7:9217

    Google Scholar 

  • Zhang M, Mo H, Sun W et al (2016) Systematic isolation and characterization of cadmium tolerant genes in tobacco: a cDNA library construction and screening approach. PLoS One 11:e0161147

    Google Scholar 

  • Zhu W, Zhao D-X, Miao Q et al (2009) Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress. J Plant Biol 52:585–592

    CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Research Council of Canada (NSERC).

Conflict of Interest

Authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabwe Nkongolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narendrula-Kotha, R., Theriault, G., Mehes-Smith, M., Kalubi, K., Nkongolo, K. (2019). Metal Toxicity and Resistance in Plants and Microorganisms in Terrestrial Ecosystems. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 249. Reviews of Environmental Contamination and Toxicology, vol 249. Springer, Cham. https://doi.org/10.1007/398_2018_22

Download citation

Publish with us

Policies and ethics