Skip to main content

Chemical Transformations in Heterobimetallic Complexes Facilitated by the Second Coordination Sphere

  • Chapter
  • First Online:
Modes of Cooperative Effects in Dinuclear Complexes

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 70))

Abstract

This chapter is dedicated to heterobimetallic complexes in which the two metal centers are not directly bound. Complexes are described in which the second metal resides in the second coordination sphere of the first metal and enables bond activation processes via synergistic activity with the first metal that are not available to the corresponding monometallic complexes. Both stoichiometric and catalytic bond activations are analyzed in the light of the type of reactions (e.g., H2 activation, polymerization, etc.). Both steric and electronic effects appear to play significant roles in many cases, and as such, they are examined when applicable. Indeed, spatial proximity between the two metal centers as well as electronic environment can allow for modification and tuning of reactivity. This realization has led to the development of switchable catalytic systems which are highlighted and discussed in terms of how they are manipulated (e.g., redox-switchable systems and cation-responsive systems). While significant progress has been made toward furthering our collective understanding of the behavior of these types of heterobimetallic complexes, this area is still ripe for future development. Additional systematic work is necessary to continue to push this area of chemistry forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephan DW (1989) Early-late heterobimetallics. Coord Chem Rev 95(1):41–107. https://doi.org/10.1016/0010-8545(89)80002-5

    Article  CAS  Google Scholar 

  2. Charles III RM, Brewster TP (2021) H2 and carbon-heteroatom bond activation mediated by polarized heterobimetallic complexes. Coord Chem Rev 433:213765. https://doi.org/10.1016/j.ccr.2020.213765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cotton FA, Lecture C (1975) Quadruple bonds and other multiple metal to metal bonds. Chem Soc Rev 4(1):27–53. https://doi.org/10.1039/CS9750400027

    Article  CAS  Google Scholar 

  4. Cotton FA (1978) Discovering and understanding multiple metal-to-metal bonds. Acc Chem Res 11(6):225–232. https://doi.org/10.1021/ar50126a001

    Article  CAS  Google Scholar 

  5. Cooper BG, Napoline JW, Thomas CM (2012) Catalytic applications of early/late heterobimetallic complexes. Catal Rev 54(1):1–40. https://doi.org/10.1080/01614940.2012.619931

    Article  CAS  Google Scholar 

  6. Wheatley N, Kalck P (1999) Structure and reactivity of early−late heterobimetallic complexes. Chem Rev 99(12):3379–3420. https://doi.org/10.1021/cr980325m

    Article  CAS  PubMed  Google Scholar 

  7. Campos J (2020) Bimetallic cooperation across the periodic table. Nat Rev Chem 4(12):696–702. https://doi.org/10.1038/s41570-020-00226-5

    Article  CAS  PubMed  Google Scholar 

  8. Park J, Hong S (2012) Cooperative bimetallic catalysis in asymmetric transformations. Chem Soc Rev 41(21):6931–6943. https://doi.org/10.1039/C2CS35129C

    Article  CAS  PubMed  Google Scholar 

  9. Hicks J, Vasko P, Goicoechea JM, Aldridge S (2018) Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557(7703):92–95. https://doi.org/10.1038/s41586-018-0037-y

    Article  CAS  PubMed  Google Scholar 

  10. Charles III RM, Yokley TW, Schley ND, DeYonker NJ, Brewster TP (2019) Hydrogen activation and hydrogenolysis facilitated by late-transition-metal–aluminum heterobimetallic complexes. Inorg Chem 58(19):12635–12645. https://doi.org/10.1021/acs.inorgchem.9b01359

    Article  CAS  Google Scholar 

  11. Brewster TP, Nguyen TH, Li Z, Eckenhoff WT, Schley ND, DeYonker NJ (2018) Synthesis and characterization of heterobimetallic iridium–aluminum and rhodium–aluminum complexes. Inorg Chem 57(3):1148–1157. https://doi.org/10.1021/acs.inorgchem.7b02601

    Article  CAS  PubMed  Google Scholar 

  12. Stephan DW (2015) Frustrated Lewis pairs: from concept to catalysis. Acc Chem Res 48(2):306–316. https://doi.org/10.1021/ar500375j

    Article  CAS  PubMed  Google Scholar 

  13. Stephan DW (2016) The broadening reach of frustrated Lewis pair chemistry. Science 354(6317). https://doi.org/10.1126/science.aaf7229

  14. Stephan DW, Erker G (2015) Frustrated Lewis pair chemistry: development and perspectives. Angew Chem Int Ed 54(22):6400–6441. https://doi.org/10.1002/anie.201409800

    Article  CAS  Google Scholar 

  15. Bouhadir G, Bourissou D (2016) Complexes of ambiphilic ligands: reactivity and catalytic applications. Chem Soc Rev 45(4):1065–1079. https://doi.org/10.1039/C5CS00697J

    Article  CAS  PubMed  Google Scholar 

  16. Flynn SR, Wass DF (2013) Transition metal frustrated Lewis pairs. ACS Catal 3(11):2574–2581. https://doi.org/10.1021/cs400754w

    Article  CAS  Google Scholar 

  17. Navarro M, Campos J (2021) Chapter three – bimetallic frustrated Lewis pairs. In: Pérez PJ (ed) Advances in organometallic chemistry, vol 75. Academic Press, pp 95–148. https://doi.org/10.1016/bs.adomc.2021.01.001

    Chapter  Google Scholar 

  18. Devillard M, Declercq R, Nicolas E, Ehlers AW, Backs J, Saffon-Merceron N, Bouhadir G, Slootweg JC, Uhl W, Bourissou D (2016) A significant but constrained geometry Pt→Al interaction: fixation of CO2 and CS2, activation of H2 and PhCONH2. J Am Chem Soc 138(14):4917–4926. https://doi.org/10.1021/jacs.6b01320

    Article  CAS  PubMed  Google Scholar 

  19. Shima T, Suzuki H (2005) Heterobimetallic polyhydride complex, Cp*Ru(μ-H)4OsCp* (Cp* = Η5-C5Me5). Synthesis and reaction with ethylene. Organometallics 24(16):3939–3945. https://doi.org/10.1021/om0503996

    Article  CAS  Google Scholar 

  20. Suzuki H, Omori H, Moro-Oka Y (1988) Activation of the carbon-hydrogen bond of ethylene by a dinuclear tetrahydride-bridged ruthenium complex. Organometallics 7(12):2579–2581. https://doi.org/10.1021/om00102a031

    Article  CAS  Google Scholar 

  21. Omori H, Suzuki H, Morooka Y (1989) Preparation and structure determination of a dinuclear ruthenacyclopentadiene complex. Coupling of coordinated vinyl ligands. Organometallics 8(6):1576–1578. https://doi.org/10.1021/om00108a039

    Article  CAS  Google Scholar 

  22. Suzuki H, Omori H, Lee DH, Yoshida Y, Fukushima M, Tanaka M, Moro-oka Y (1994) Synthesis, structure, and chemistry of a dinuclear tetrahydride-bridged complex of ruthenium, (.Eta.5-C5Me5)Ru(.Mu.-H)4Ru(.Eta.5-C5Me5). C-H bond activation and coupling reaction of ethylene on dinuclear complexes. Organometallics 13(4):1129–1146. https://doi.org/10.1021/om00016a017

    Article  CAS  Google Scholar 

  23. Oishi M, Kato T, Nakagawa M, Suzuki H (2008) Synthesis and reactivity of early−late heterobimetallic hydrides of group 4 metals and iridium supported by mono(Η5-C5Me5) ancillary ligands: bimetallic carbon−hydrogen bond activation. Organometallics 27(23):6046–6049. https://doi.org/10.1021/om800715b

    Article  CAS  Google Scholar 

  24. Cai Z, Xiao D, Do LH (2019) Cooperative heterobimetallic catalysts in coordination insertion polymerization. Comments Inorg Chem 39(1):27–50. https://doi.org/10.1080/02603594.2019.1570165

    Article  CAS  Google Scholar 

  25. Boulho C, Zijlstra HS, Harder S (2015) Oxide-bridged heterobimetallic aluminum/zirconium catalysts for ethylene polymerization. Eur J Inorg Chem 2015(12):2132–2138. https://doi.org/10.1002/ejic.201500123

    Article  CAS  Google Scholar 

  26. Boulho C, Zijlstra HS, Hofmann A, Budzelaar PHM, Harder S (2016) Insight into oxide-bridged heterobimetallic Al/Zr olefin polymerization catalysts. Chem Eur J 22(48):17450–17459. https://doi.org/10.1002/chem.201602674

    Article  CAS  PubMed  Google Scholar 

  27. Chiu H-C, Koley A, Dunn PL, Hue RJ, Tonks IA (2017) Ethylene polymerization catalyzed by bridging Ni/Zn heterobimetallics. Dalton Trans 46(17):5513–5517. https://doi.org/10.1039/C7DT00222J

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura T, Suzuki K, Yamashita M (2018) A Zwitterionic aluminabenzene–alkylzirconium complex having half-zirconocene structure: synthesis and application for additive-free ethylene polymerization. Chem Commun 54(33):4180–4183. https://doi.org/10.1039/C8CC02186D

    Article  CAS  Google Scholar 

  29. Bhattacharjee H, Müller J (2016) Metallocenophanes bridged by group 13 elements. Coord Chem Rev 314:114–133. https://doi.org/10.1016/j.ccr.2015.09.008

    Article  CAS  Google Scholar 

  30. Suo H, Solan GA, Ma Y, Sun W-H (2018) Developments in compartmentalized bimetallic transition metal ethylene polymerization catalysts. Coord Chem Rev 372:101–116. https://doi.org/10.1016/j.ccr.2018.06.006

    Article  CAS  Google Scholar 

  31. Tanabiki M, Tsuchiya K, Motoyama Y, Nagashima H (2005) Monometallic and heterobimetallic azanickellacycles as ethylene polymerization catalysts. Chem Commun 27:3409–3411. https://doi.org/10.1039/B502942B

    Article  Google Scholar 

  32. Gurubasavaraj PM, Nomura K (2010) Hetero-bimetallic complexes of titanatranes with aluminum alkyls: synthesis, structural analysis, and their use in catalysis for ethylene polymerization. Organometallics 29(16):3500–3506. https://doi.org/10.1021/om100119g

    Article  CAS  Google Scholar 

  33. Kulangara SV, Jabri A, Yang Y, Korobkov I, Gambarotta S, Duchateau R (2012) Synthesis, X-ray structural analysis, and ethylene polymerization studies of group IV metal heterobimetallic aluminum-pyrrolyl complexes. Organometallics 31(17):6085–6094. https://doi.org/10.1021/om300453a

    Article  CAS  Google Scholar 

  34. Barisic D, Lebon J, Maichle-Mössmer C, Anwander R (2019) Pentadienyl migration and abstraction in yttrium aluminabenzene complexes including a single-component catalyst for isoprene polymerization. Chem Commun 55(49):7089–7092. https://doi.org/10.1039/C9CC02857A

    Article  CAS  Google Scholar 

  35. Barisic D, Buschmann DA, Schneider D, Maichle-Mössmer C, Anwander R (2019) Rare-earth-metal pentadienyl half-sandwich and sandwich tetramethylaluminates–synthesis, structure, reactivity, and performance in isoprene polymerization. Chem A Eur J 25(18):4821–4832. https://doi.org/10.1002/chem.201900108

    Article  CAS  Google Scholar 

  36. Tritto I, Li SX, Sacchi MC, Locatelli P, Zannoni G (1995) Titanocene-Methylaluminoxane catalysts for olefin polymerization: a 13C NMR study of the reaction equilibria and polymerization. Macromolecules 28(15):5358–5362. https://doi.org/10.1021/ma00119a028

    Article  CAS  Google Scholar 

  37. Fischer D, Mülhaupt R (1994) The influence of Regio- and Stereoirregularities on the crystallization behaviour of isotactic poly(propylene)s prepared with homogeneous group IVa metallocene/Methylaluminoxane Ziegler-Natta catalysts. Macromol Chem Phys 195(4):1433–1441. https://doi.org/10.1002/macp.1994.021950426

    Article  CAS  Google Scholar 

  38. Endo K, Uchida Y, Matsuda Y (1996) Polymerizations of butadiene with Ni(Acac)2-methylaluminoxane catalysts. Macromol Chem Phys 197(11):3515–3521. https://doi.org/10.1002/macp.1996.021971102

    Article  CAS  Google Scholar 

  39. Endo K, Yamanaka Y (2001) Polymerization of butadiene with V(Acac)3-methylaluminoxane catalyst. Macromol Chem Phys 202(1):201–206. https://doi.org/10.1002/1521-3935(20010101)202:1<201::AID-MACP201>3.0.CO;2-D

    Article  CAS  Google Scholar 

  40. Wang J, Li H, Guo N, Li L, Stern CL, Marks TJ (2004) Covalently linked heterobimetallic catalysts for olefin polymerization. Organometallics 23(22):5112–5114. https://doi.org/10.1021/om049481b

    Article  CAS  Google Scholar 

  41. Ishino H, Takemoto S, Hirata K, Kanaizuka Y, Hidai M, Nabika M, Seki Y, Miyatake T, Suzuki N (2004) Olefin polymerization catalyzed by titanium−tungsten heterobimetallic dinitrogen Complexes1. Organometallics 23(20):4544–4546. https://doi.org/10.1021/om049447x

    Article  CAS  Google Scholar 

  42. Liu S, Motta A, Mouat AR, Delferro M, Marks TJ (2014) Very large cooperative effects in heterobimetallic titanium-chromium catalysts for ethylene polymerization/copolymerization. J Am Chem Soc 136(29):10460–10469. https://doi.org/10.1021/ja5046742

    Article  CAS  PubMed  Google Scholar 

  43. Tsai C-C, Shih W-C, Fang C-H, Li C-Y, Ong T-G, Yap GPA (2010) Bimetallic nickel aluminun mediated para-selective alkenylation of pyridine: direct observation of Η2,Η1-pyridine Ni(0)−Al(III) intermediates prior to C−H bond activation. J Am Chem Soc 132(34):11887–11889. https://doi.org/10.1021/ja1061246

    Article  CAS  PubMed  Google Scholar 

  44. Nakao Y, Yamada Y, Kashihara N, Hiyama T (2010) Selective C-4 alkylation of pyridine by nickel/Lewis acid catalysis. J Am Chem Soc 132(39):13666–13668. https://doi.org/10.1021/ja106514b

    Article  CAS  PubMed  Google Scholar 

  45. Nakao Y, Morita E, Idei H, Hiyama T (2011) Dehydrogenative [4 + 2] cycloaddition of formamides with alkynes through double C−H activation. J Am Chem Soc 133(10):3264–3267. https://doi.org/10.1021/ja1102037

    Article  CAS  PubMed  Google Scholar 

  46. Shih W-C, Chen W-C, Lai Y-C, Yu M-S, Ho J-J, Yap GPA, Ong T-G (2012) The regioselective switch for amino-NHC mediated C–H activation of benzimidazole via Ni–Al synergistic catalysis. Org Lett 14(8):2046–2049. https://doi.org/10.1021/ol300570f

    Article  CAS  PubMed  Google Scholar 

  47. Yang L, Uemura N, Nakao Y (2019) Meta-selective C–H borylation of benzamides and pyridines by an Iridium–Lewis acid bifunctional catalyst. J Am Chem Soc 141(19):7972–7979. https://doi.org/10.1021/jacs.9b03138

    Article  CAS  PubMed  Google Scholar 

  48. Osipova ES, Gulyaeva ES, Gutsul EI, Kirkina VA, Pavlov AA, Nelyubina YV, Rossin A, Peruzzini M, Epstein LM, Belkova NV, Filippov OA, Shubina ES (2021) Bifunctional activation of amine-boranes by the W/Pd bimetallic analogs of “Frustrated Lewis Pairs”. Chem Sci 12(10):3682–3692. https://doi.org/10.1039/D0SC06114J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buil ML, Esteruelas MA, Izquierdo S, Nicasio AI, Oñate E (2020) N–H and C–H bond activations of an isoindoline promoted by iridium- and osmium-polyhydride complexes: a noninnocent bridge ligand for acceptorless and base-free dehydrogenation of secondary alcohols. Organometallics 39(14):2719–2731. https://doi.org/10.1021/acs.organomet.0c00316

    Article  CAS  Google Scholar 

  50. Yin G, Li Y, Wang R-H, Li J-F, Xu X-T, Luan Y-X, Ye M (2021) Ligand-controlled Ni(0)–Al(III) bimetal-catalyzed C3–H alkenylation of 2-pyridones by reversing conventional selectivity. ACS Catal 11(8):4606–4612. https://doi.org/10.1021/acscatal.1c00750

    Article  CAS  Google Scholar 

  51. Donets PA, Cramer N (2013) Diaminophosphine oxide ligand enabled asymmetric nickel-catalyzed hydrocarbamoylations of alkenes. J Am Chem Soc 135(32):11772–11775. https://doi.org/10.1021/ja406730t

    Article  CAS  PubMed  Google Scholar 

  52. Slone CS, Mirkin CA, Yap GPA, Guzei IA, Rheingold AL (1997) Oxidation-state-dependent reactivity and catalytic properties of a Rh(I) complex formed from a redox-switchable hemilabile ligand. J Am Chem Soc 119(44):10743–10753. https://doi.org/10.1021/ja9723601

    Article  CAS  Google Scholar 

  53. Lorkovic IM, Duff RR, Wrighton MS (1995) Use of the redox-active ligand 1,1’-bis(Diphenylphosphino)cobaltocene to reversibly alter the rate of the rhodium(I)-catalyzed reduction and isomerization of ketones and alkenes. J Am Chem Soc 117(12):3617–3618. https://doi.org/10.1021/ja00117a033

    Article  CAS  Google Scholar 

  54. Schrock RR, Osborn JA (1970) Rhodium catalysts for the homogeneous hydrogenation of ketones. J Chem Soc D 9:567–568. https://doi.org/10.1039/C29700000567

    Article  Google Scholar 

  55. Schrock RR, Osborn JA (1976) Catalytic hydrogenation using cationic rhodium complexes. I. Evolution of the catalytic system and the hydrogenation of olefins. J Am Chem Soc 98(8):2134–2143. https://doi.org/10.1021/ja00424a020

    Article  CAS  Google Scholar 

  56. Tolman CA (1977) Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev 77(3):313–348. https://doi.org/10.1021/cr60307a002

    Article  CAS  Google Scholar 

  57. Jacobsen EN, Zhang W, Guler ML (1991) Electronic tuning of asymmetric catalysts. J Am Chem Soc 113(17):6703–6704. https://doi.org/10.1021/ja00017a069

    Article  CAS  Google Scholar 

  58. RajanBabu TV, Casalnuovo AL (1992) Tailored ligands for asymmetric catalysis: the hydrocyanation of vinyl arenes. J Am Chem Soc 114(15):6265–6266. https://doi.org/10.1021/ja00041a066

    Article  CAS  Google Scholar 

  59. RajanBabu TV, Ayers TA, Casalnuovo AL (1994) Electronic amplification of selectivity in rh-catalyzed hydrogenations: D-glucose-derived ligands for the synthesis of D- or L-amino acids. J Am Chem Soc 116(9):4101–4102. https://doi.org/10.1021/ja00088a065

    Article  CAS  Google Scholar 

  60. Süßner M, Plenio H (2005) Redox-switchable phase tags for recycling of homogeneous catalysts. Angew Chem Int Ed 44(42):6885–6888. https://doi.org/10.1002/anie.200502182

    Article  CAS  Google Scholar 

  61. Arumugam K, Varnado Jr CD, Sproules S, Lynch VM, Bielawski CW (2013) Redox-switchable ring-closing metathesis: catalyst design, synthesis, and study. Chem A Eur J 19(33):10866–10875. https://doi.org/10.1002/chem.201301247

    Article  CAS  Google Scholar 

  62. Varnado Jr CD, Rosen EL, Collins MS, Lynch VM, Bielawski CW (2013) Synthesis and study of olefin metathesis catalysts supported by redox-switchable diaminocarbene[3]ferrocenophanes. Dalton Trans 42(36):13251–13264. https://doi.org/10.1039/C3DT51278A

    Article  CAS  PubMed  Google Scholar 

  63. Brown LA, Rhinehart JL, Long BK (2015) Effects of ferrocenyl proximity and monomer presence during oxidation for the redox-switchable polymerization of l-lactide. ACS Catal 5(10):6057–6060. https://doi.org/10.1021/acscatal.5b01434

    Article  CAS  Google Scholar 

  64. Gregson CKA, Gibson VC, Long NJ, Marshall EL, Oxford PJ, White AJP (2006) Redox control within single-site polymerization catalysts. J Am Chem Soc 128(23):7410–7411. https://doi.org/10.1021/ja061398n

    Article  CAS  PubMed  Google Scholar 

  65. Hermans C, Rong W, Spaniol TP, Okuda J (2016) Lanthanum complexes containing a bis(phenolate) ligand with a ferrocene-1,1′-diyldithio backbone: synthesis, characterization, and ring-opening polymerization of Rac-lactide. Dalton Trans 45(19):8127–8133. https://doi.org/10.1039/C6DT00272B

    Article  CAS  PubMed  Google Scholar 

  66. Chen M, Yang B, Chen C (2015) Redox-controlled olefin (Co)polymerization catalyzed by ferrocene-bridged phosphine-sulfonate palladium complexes. Angew Chem Int Ed 54(51):15520–15524. https://doi.org/10.1002/anie.201507274

    Article  CAS  Google Scholar 

  67. Dai R, Diaconescu PL (2019) Investigation of a zirconium compound for redox switchable ring opening polymerization. Dalton Trans 48(9):2996–3002. https://doi.org/10.1039/C9DT00212J

    Article  CAS  PubMed  Google Scholar 

  68. Lai A, Hern ZC, Diaconescu PL (2019) Switchable ring-opening polymerization by a ferrocene supported aluminum complex. ChemCatChem 11(16):4210–4218. https://doi.org/10.1002/cctc.201900747

    Article  CAS  Google Scholar 

  69. Hettmanczyk L, Manck S, Hoyer C, Hohloch S, Sarkar B (2015) Heterobimetallic complexes with redox-active mesoionic carbenes as metalloligands: electrochemical properties, electronic structures and catalysis. Chem Commun 51(54):10949–10952. https://doi.org/10.1039/C5CC01578B

    Article  CAS  Google Scholar 

  70. Shepard SM, Diaconescu PL (2016) Redox-switchable hydroelementation of a cobalt complex supported by a ferrocene-based ligand. Organometallics 35(15):2446–2453. https://doi.org/10.1021/acs.organomet.6b00317

    Article  CAS  Google Scholar 

  71. Shen Y, Shepard SM, Reed CJ, Diaconescu PL (2019) Zirconium complexes supported by a ferrocene-based ligand as redox switches for hydroamination reactions. Chem Commun 55(39):5587–5590. https://doi.org/10.1039/C9CC01076A

    Article  CAS  Google Scholar 

  72. Yu C, Liang J, Deng C, Lefèvre G, Cantat T, Diaconescu PL, Huang W (2020) Arene-bridged dithorium complexes: inverse sandwiches supported by a δ bonding interaction. J Am Chem Soc 142(51):21292–21297. https://doi.org/10.1021/jacs.0c11215

    Article  CAS  PubMed  Google Scholar 

  73. Ibáñez S, Poyatos M, Dawe LN, Gusev D, Peris E (2016) Ferrocenyl-imidazolylidene ligand for redox-switchable gold-based catalysis. A detailed study on the redox-switching abilities of the ligand. Organometallics 35(16):2747–2758. https://doi.org/10.1021/acs.organomet.6b00517

    Article  CAS  Google Scholar 

  74. Ibáñez S, Poyatos M, Peris E (2016) A ferrocenyl-benzo-fused imidazolylidene complex of ruthenium as redox-switchable catalyst for the transfer hydrogenation of ketones and imines. ChemCatChem 8(24):3790–3795. https://doi.org/10.1002/cctc.201601025

    Article  CAS  Google Scholar 

  75. Klenk S, Rupf S, Suntrup L, van der Meer M, Sarkar B (2017) The power of ferrocene, mesoionic carbenes, and gold: redox-switchable catalysis. Organometallics 36(10):2026–2035. https://doi.org/10.1021/acs.organomet.7b00270

    Article  CAS  Google Scholar 

  76. Feyrer A, Armbruster MK, Fink K, Breher F (2017) Metal complexes of a redox-active [1]phosphaferrocenophane: structures, electrochemistry and redox-induced catalysis. Chem A Eur J 23(31):7402–7408. https://doi.org/10.1002/chem.201700868

    Article  CAS  Google Scholar 

  77. Deck E, Wagner HE, Paradies J, Breher F (2019) Redox-responsive phosphonite gold complexes in hydroamination catalysis. Chem Commun 55(37):5323–5326. https://doi.org/10.1039/C9CC01492F

    Article  CAS  Google Scholar 

  78. Veit P, Volkert C, Förster C, Ksenofontov V, Schlicher S, Bauer M, Heinze K (2019) Gold(II) in redox-switchable gold(I) catalysis. Chem Commun 55(32):4615–4618. https://doi.org/10.1039/C9CC00283A

    Article  CAS  Google Scholar 

  79. Kita MR, Miller AJM (2014) Cation-modulated reactivity of iridium hydride pincer-crown ether complexes. J Am Chem Soc 136(41):14519–14529. https://doi.org/10.1021/ja507324s

    Article  CAS  PubMed  Google Scholar 

  80. Kita MR, Miller AJM (2017) An ion-responsive pincer-crown ether catalyst system for rapid and switchable olefin isomerization. Angew Chem Int Ed 56(20):5498–5502. https://doi.org/10.1002/anie.201701006

    Article  CAS  Google Scholar 

  81. Gregor LC, Grajeda J, Kita MR, White PS, Vetter AJ, Miller AJM (2016) Modulating the elementary steps of methanol carbonylation by bridging the primary and secondary coordination spheres. Organometallics 35(17):3074–3086. https://doi.org/10.1021/acs.organomet.6b00607

    Article  CAS  Google Scholar 

  82. Gregor LC, Grajeda J, White PS, Vetter AJ, Miller AJM (2018) Salt-promoted catalytic methanol carbonylation using iridium pincer-crown ether complexes. Cat Sci Technol 8(12):3133–3143. https://doi.org/10.1039/C8CY00328A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Brewster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malcolm Charles III, R., Brewster, T.P. (2023). Chemical Transformations in Heterobimetallic Complexes Facilitated by the Second Coordination Sphere. In: Kalck, P. (eds) Modes of Cooperative Effects in Dinuclear Complexes. Topics in Organometallic Chemistry, vol 70. Springer, Cham. https://doi.org/10.1007/3418_2022_79

Download citation

Publish with us

Policies and ethics