Skip to main content

The Mechanism for Transition-Metal-Catalyzed Hydrochalcogenation of Unsaturated Organic Molecules

  • Chapter
  • First Online:
Hydrofunctionalization

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 43))

Abstract

In this chapter, discussions are focused on two types of mechanisms of transition-metal-catalyzed hydrochalcogenation, Type I and Type II, which are classified by the initial behavior of precatalysts. In Type I mechanism, precatalyst M–X (M = Pd, Ni, Zr, Ln, and An) first undergoes protonolysis with REH (E = O, S, and Se) to generate active catalyst M–ER, which then undergoes insertion of alkyne into the M–ER bond (chalcogenometalation) to give 2-chalcogenovinyl complex, followed by protonolysis of M–Cvinyl with REH to produce the product and to regenerate active catalyst M–ER. Type II mechanism starts from oxidative addition of REH (E = S and Se) to complex [M] (M = Pd, Pt, Rh, and Ir) to give chalcogenolato–hydrido complex, [M]H(ER). In the next alkyne insertion, [M]–H insertion (hydrometalation) to give [M](ER)(vinyl) or [M]–E insertion (chalcogenometalation) to give [M]H(2-RE-vinyl) occurs and then reductive elimination of the resulting vinyl [M] complexes yields the product and [M]. Reactions where transition metal catalysts exert as Lewis acid to activate unsaturated bonds and those proceeding through vinylidene intermediates are mentioned only shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso F, Beletskaya IP, Yus M (2004) Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. Chem Rev 104:3079–3159

    Article  CAS  Google Scholar 

  2. Beletskaya I, Moberg C (1999) Element-element addition to alkynes catalyzed by the group 10 metals. Chem Rev 99:3435–3461

    Article  CAS  Google Scholar 

  3. Beletskaya IP, Ananikov VP (2007) Unusual influence of the structures of transition metal complexes on catalytic C-S and C-Se bond formation under homogenous and heterogeneous conditions. Eur J Org Chem 3431–3444

    Google Scholar 

  4. Han L-B, Tanaka M (1999) Transition-metal-catalyzed addition reactions of H-heteroatom and inter-heteroatom bonds to carbon-carbon unsaturated linkages via oxidative additions. Chem Commun 395–402

    Google Scholar 

  5. Kuniyasu H, Kambe N (2006) Transition metal-catalyzed carbochalcogenation of alkynes. Chem Lett 35:1320–1325

    Article  CAS  Google Scholar 

  6. Kuniyasu H, Kurosawa H (2002) Transition-metal-catalyzed carbon–heteroatom three-component cross-coupling reactions: a new concept for carbothiolation of alkynes. Chem Eur J 8:2660–2665

    Article  CAS  Google Scholar 

  7. Kuniyasu H, Kambe N (2009) Organometallics using organosulfur compounds: exchange of information between catalytic and stoichiometric reactions. J Synth Org Chem Jpn 67:701–713

    Article  CAS  Google Scholar 

  8. Beletskaya IP, Ananikov VP (2011) Transition-metal-catalyzed C–S, C-Se, and C–Te bond formation via cross-coupling and atom-economic addition reactions. Chem Rev 111:1596–1636

    Article  CAS  Google Scholar 

  9. Sasaki S, Mizoe N, Sugimoto M (1998) Theoretical study of platinum(0)-catalyzed hydrosilylation of ethylene. Chalk-Harrod mechanism or modified Chalk-Harrod mechanism. Organometallics 17:2510–2523

    Article  Google Scholar 

  10. Hashmi AKS, Bührle M (2010) Gold-catalyzed addition of X-H bonds to C-C multiple bonds. Aldrichimica Acta 43:27–33

    CAS  Google Scholar 

  11. Santos LL, Ruiz VR, Sabater MJ, Corma A (2008) Regioselective transformation of alkynes into cyclic acetals and thioacetals with a gold(I) catalyst: comparison with Brønsted acid catalysts. Tetrahedron 64:7902–7909

    Article  CAS  Google Scholar 

  12. Qian H, Han X, Widenhoefer RA (2004) Platinum-catalyzed intramolecular hydroalkoxylation of γ- and δ-hydroxy olefins to form cyclic ethers. J Am Chem Soc 126:9536–9537

    Article  CAS  Google Scholar 

  13. Zhang Z, Liu C, Kinder RE, Han X, Qian H, Widenhoefer RA (2006) Highly active Au(I) catalyst for the intramolecular exo-hydrofunctionalization of allenes with carbon, nitrogen, and oxygen nucleophiles. J Am Chem Soc 128:9066–9073

    Article  CAS  Google Scholar 

  14. Zhang Z, Widenhoefer RA (2008) Regio- and stereoselective synthesis of alkyl allylic ethers via gold(I)-catalyzed intermolecular hydroalkoxylation of allenes with alcohols. Org Lett 10:2079–2081

    Article  CAS  Google Scholar 

  15. Yang C-G, Reich NW, Shi Z, He C (2005) Intramolecular additions of alcohols and carboxylic acids to inert olefins catalyzed by silver(I) triflate. Org Lett 7:4553–4556

    Article  CAS  Google Scholar 

  16. Harkat H, Weibel J-M, Pale P (2007) Synthesis of functionalized THF and THP through Au-catalyzed cyclization of acetylenic alcohols. Tetrahedron Lett 48:1439–1442

    Article  CAS  Google Scholar 

  17. Nishina N, Yamamoto Y (2008) Gold-catalyzed intermolecular hydroalkoxylation of allenes; difference in mechanism between hydroalkoxylation and hydroamination. Tetrahedron Lett 49:4908–4911

    Article  CAS  Google Scholar 

  18. Nishina N, Yamamoto Y (2009) Gold-catalyzed hydrofunctionalization of allenes with nitrogen and oxygen nucleophiles and its mechanistic insight. Tetrahedron 65:1799–1808

    Article  CAS  Google Scholar 

  19. Weyershausen B, Dötz KH (1999) Cycloisomerization of alkynols at transition metal templates. Eur J Inorg Chem 1057–1066

    Google Scholar 

  20. McDonald FE, Connolly CB, Gleason MM, Towne TB, Treiber KD (1993) A new synthesis of 2,3-dihydrofurans: cycloisomerization alkynyl alcohols to endocyclic enol ethers. J Org Chem 58:6952–6953

    Article  CAS  Google Scholar 

  21. Kuniyasu H, Ogawa A, Sato K-I, Ryu I, Sonoda N (1992) The first example of transition-metal-catalyzed hydroselenation of acetylenes. Tetrahedron Lett 33:5525–5528

    Article  CAS  Google Scholar 

  22. Kuniyasu H, Ogawa A, Sato K-I, Ryu I, Kambe N, Sonoda N (1992) The first example of transition-metal-catalyzed addition of aromatic thiols to acetylenes. J Am Chem Soc 114:5902–5903

    Article  CAS  Google Scholar 

  23. Kamiya I, Nishinaka E, Ogawa A (2005) Palladium(II) acetate in pyridine as an efficient catalyst for highly regioselecitve hydroselenation of alkynes. J Org Chem 70:696–698

    Article  CAS  Google Scholar 

  24. Ogawa A, Ikeda T, Kimura K, Hirao T (1999) Highly regio- and stereocontrolled synthesis of vinyl sulfides via transition-metal-catalyzed hydrothiolation of alkynes with thiols. J Am Chem Soc 121:5108–5114

    Article  CAS  Google Scholar 

  25. Ozaki T, Kotani M, Kusano H, Nomoto A, Ogawa A (2011) Highly regioselective hydroselenation and double-bond isomerization of terminal alkynes with benzeneselenol catalyzed by bis(triphenylphosphine)palladium(II) dichloride. J Organomet Chem 696:450–455

    Article  CAS  Google Scholar 

  26. Kondoh A, Yorimitsu H, Oshima K (2007) Palladium-catalyzed anti-hydrothiolation of 1-alkynylphosphines. Org Lett 9:1383–1385

    Article  CAS  Google Scholar 

  27. Ananikov VP, Malyshev DA, Beletskaya IP, Aleksandrov GG, Eremenko IL (2005) Nickel(II) chloride-catalyzed regioselective hydrothiolation of alkynes. Adv Synth Catal 347:1993–2001

    Article  CAS  Google Scholar 

  28. Ananikov VP, Orlov NV, Beletskaya IP (2006) Efficient and convenient synthesis of β-vinyl sulfides in nickel-catalyzed regioselective addition of thiols to terminal alkynes under solvent-free conditions. Organometallics 25:1970–1977

    Article  CAS  Google Scholar 

  29. Ananikov VP, Zalesskiy SS, Orlev NV, Beletskaya IP (2006) Nickel-catalyzed addition of benzenethiol to alkynes: formation of carbon–sulfur and carbon–carbon bonds. Russ Chem Bull Int Ed 55:2109–2133

    Article  CAS  Google Scholar 

  30. Ananikov VP, Orlev NV, Beletskaya IP (2007) Highly efficient nickel-based heterogeneous catalytic system with nanosized structural organization for selective Se–H bond addition to terminal and internal alkynes. Organometallics 26:740–750

    Article  CAS  Google Scholar 

  31. Malyshev DA, Scott NM, Marion N, Stevens ED, Ananikov VP, Beletskaya IP, Nolan SP (2006) Homogeneous nickel catalysts for the selective transfer of a single arylthio group in the catalytic hydrothiolation of alkynes. Organometallics 25:4462–4470

    Article  CAS  Google Scholar 

  32. Ananikov VP, Gayduk KA, Beletskaya IP, Khrustalev VN, Antipin MY (2009) Catalytic leaching as an efficient tool for constructing new catalytic reactions: application to the synthesis of cyclic vinyl sulfides and vinyl selenides. Eur J Inorg Chem 1149–1161

    Google Scholar 

  33. Weiss CJ, Wobser SD, Marks TJ (2009) Organoactinide-mediated hydrothiolation of terminal alkynes with aliphatic, aromatic, and benzylic thiols. J Am Chem Soc 131:2062–2063

    Article  CAS  Google Scholar 

  34. Weiss CJ, Wobser SD, Marks TJ (2010) Lanthanide- and actinide-mediated terminal alkyne hydrothiolation for the catalytic synthesis of Markovnikov vinyl sulfides. Organometallics 29:6308–6320

    Article  CAS  Google Scholar 

  35. Weiss CJ, Marks TJ (2010) Organozirconium complexes as catalysts for Markovnikov-selective intermolecular hydrothiolation of terminal alkynes: scope and mechanism. J Am Chem Soc 132:10533–10546

    Article  CAS  Google Scholar 

  36. Yu X, Seo SY, Marks TJ (2007) Effective, selective hydroalkoxylation/cyclization of alkynyl and allenyl alcohols mediated by lanthanide catalysts. J Am Chem Soc 129:7244–7245

    Article  CAS  Google Scholar 

  37. Seo SY, Yu X, Marks TJ (2009) Intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide Catalysts. Scope and reaction mechanism. J Am Chem Soc 131:263–276

    Article  CAS  Google Scholar 

  38. Motta A, Fragalà IL, Marks TJ (2010) Atom-efficient carbon-oxygen bond formation processes. DFT analysis of the intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysts. Organometallics 29:2004–2012

    Article  CAS  Google Scholar 

  39. Seo SY, Marks TB (2010) Lanthanide-catalyst-mediated tandem double intramolecular hydroalkoxylation/cyclization of dialkynyl dialcohols: scope and mechanism. Chem Eur J 16:5148–5162

    Article  CAS  Google Scholar 

  40. Dzudza A, Marks TJ (2009) Efficient intramolecular hydroalkoxylation/cyclization of unactivated alkenols mediated by lanthanide triflate ionic liquids. Org Lett 11:1523–1526

    Article  CAS  Google Scholar 

  41. Dzudza A, Marks TJ (2010) Efficient intramolecular hydroalkoxylation of unactivated alkenols mediated by recyclable lanthanide triflate ionic liquids: scope and mechanism. Chem Eur J 16:3403–3422

    Article  CAS  Google Scholar 

  42. Weiss CJ, Marks TJ (2010) Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation. Dalton Trans 39:6576–6588

    Article  CAS  Google Scholar 

  43. Tobisch S (2010) Mechanistic exploration of the intramolecular hydroalkoxylation of allenyl alcohols mediated by organolanthanide complexes: a DFT study. Chem Eur J 16:4955–4998

    Article  Google Scholar 

  44. Ogawa A, Kawakami J-i, Mihara M, Ikeda T, Sonoda N, Hirao T (1997) Highly regioselective hydrothiocarboxylation of acetylenes with carbon monoxide and thiols catalyzed by Pt(PPh4)4. J Am Chem Soc 119:12380–12381

    Article  CAS  Google Scholar 

  45. Wicht DK, Kourkine IV, Lew BM, Nthenge JM, Glueck DS (1997) Platinum-catalyzed acrylonitrile hydrophosphination via olefin insertion into a Pt-P bond. J Am Chem Soc 119:5039–5040

    Article  CAS  Google Scholar 

  46. Ananikov VP, Malyshev DA, Beletskaya IP, Aleksandrov GG, Eremenko IL (2003) Palladium and platinum catalyzed hydroselenation of alkynes: Se-H vs Se-Se addition to C≡C bond. J Organomet Chem 679:162–172

    Article  CAS  Google Scholar 

  47. Pringle PG, Smith MB (1990) Platinum(0)-catalysed hydrophosphination of acrylonitrile. J Chem Soc Chem Commun 1701–1702

    Google Scholar 

  48. Ohtaka A, Kuniyasu H, Kinomoto M, Kurosawa H (2002) Photo-and-thiol-driven trans insertion of phenylacetylene into H-Pt bonds. J Am Chem Soc 124:14324–14325

    Article  CAS  Google Scholar 

  49. Kuniyasu H, Takekawa K, Yamashita F, Miyafuji K, Asano S, Takai Y, Ohtaka A, Tanaka A, Sugoh K, Kurosawa H, Kambe N (2008) Insertion of alkynes into an ArS–Pt bond: regio- and Stereoselective thermal reactions, facilitation by “o-halogen effect” and photoirradiation, different alkyne preferences depending on the ancillary ligand, and application to a catalytic reaction. Organometallics 27:4788–4802

    Article  CAS  Google Scholar 

  50. Kuniyasu H, Yamashita F, Terao J, Kambe N (2007) Definitive evidence for the insertion of terminal alkynes into arylS–Pt bonds: “o-halogen effect” in stoichiometric and catalytic reactions. Angew Chem Int Ed 46:5929–5933

    Article  CAS  Google Scholar 

  51. Kuniyasu H, Kato T, Inoue M, Terao J, Kambe N (2006) The first definitive example of oxidative addition of acyclic vinyl selenide to M(0) complex. J Organomet Chem 691:1873–1878

    Article  CAS  Google Scholar 

  52. Sugoh K, Kuniyasu H, Kurosawa H (2002) The insertion of dimethyl acetylenedicarboxylate into an S–Pd bond. Chem Lett 106–107

    Google Scholar 

  53. Ishii A, Kamon H, Murakami K, Nakata N (2010) Hydroselenation and carboselenation of electron-deficient alkynes with isolable (hydrido)(selenolato)platinum(II) complexes and a selenaplatinacycle bearing a triptycene skeleton. Eur J Org Chem 1653–1659

    Google Scholar 

  54. Ishii A, Nakata N, Uchiumi R, Murakami K (2008) Reactions of a ditriptycyl-substituted selenoseleninate and related compounds with a platinum(0) complex: formation of selenaplatinacycle and hydrido selenolato platinum(II) complexes. Angew Chem Int Ed 47:2661–2664

    Article  CAS  Google Scholar 

  55. Nakata N, Yoshino T, Ishii A (2010) Synthesis and properties of hydrido(selenolato)platinum(II) complexes bearing chelating phosphine ligands. Phosphorus Sulfur Silicon Relat Elem 185:992–999

    Article  CAS  Google Scholar 

  56. Ishii A, Yamaguchi Y, Nakata N (2010) Thermal reaction of a (hydrido)(selenolato)platinum(II) complex having a dibenzobarrelenyl group leading to three cyclometalations. Dalton Trans 39:6181–6183

    Article  CAS  Google Scholar 

  57. Nakata N, Yamaguchi Y, Ishii A (2010) Synthesis and thermal reaction of hydrido(selenolato) platinum(II) complex having a 9,10,11,12,14,15-hexahydro-9,10[3′,4′]-furanoanthracenyl group. J Organomet Chem 695:970–973

    Article  CAS  Google Scholar 

  58. Nakata N, Yamamoto S, Hashima W, Ishii A (2009) Synthesis and X-ray structural analysis of hydrido(thiolato) platinum(II) complexes. Chem Lett 38:400–401

    Article  CAS  Google Scholar 

  59. Nakata N, Uchiumi R, Yoshino T, Ikeda T, Kamon H, Ishii A (2009) Reactions of 9-triptyceneselenol with palladium(0) complexes: unexpected formations of the dinuclear palladium(I) complex [{Pd(PPh3)}2(μ-SeTrip)2] and five-membered selenapalladacycle [Pd(μ2(C, Se)-Trip)(dppe)]. Organometallics 28:1981–1984

    Article  CAS  Google Scholar 

  60. Nakata N, Ikeda T, Ishii A (2010) Syntheses of selenolato-bridged dinuclear hydridoplatinum complexes [Pt2H2(μ-SetBu)2(PPh3)2] and [Pt2H(SetBu)(μ-SetBu)2(PPh3)2]: unusual thermal reaction of hydrido(1,1-dimethylethaneselenolato) platinum complex cis-[PtH(SetBu)(PPh3)2]. Inorg Chem 49:8112–8116

    Article  CAS  Google Scholar 

  61. Singer H, Wilkinson G (1968) Oxidative addition of hydrogen cyanide, hydrogen sulphide, and other acids to triphenylphosphine complexes of iridium(I) and rhodium(I). J Chem Soc A 2516–2520

    Google Scholar 

  62. Shoai S, Bichler P, Kang B, Buckley H, Love JA (2007) Catalytic alkyne Hydrothiolation with alkanethiols using Wilkinson’s catalyst. Organometallics 26:5778–5781

    Article  CAS  Google Scholar 

  63. Cao C, Fraser LR, Love JA (2005) Rhodium-catalyzed alkyne hydrothiolation with aromatic and aliphatic thiols. J Am Chem Soc 127:17614–17615

    Article  CAS  Google Scholar 

  64. Fraser LR, Bird J, Wu Q, Cao C, Patrick BO, Love JA (2007) Synthesis, structure, and hydrothiolation activity of rhodium pyrazolylborate complexes. Organometallics 26:5602–5611

    Article  CAS  Google Scholar 

  65. Sabarre A, Love J (2008) Synthesis of 1,1-disubstituted olefins via catalytic alkyne Hydrothiolation/Kumada cross-coupling. Org Lett 10:3941–3944

    Article  CAS  Google Scholar 

  66. Yang J, Sabarre A, Fraser LR, Patrick BO, Love JA (2009) Synthesis of 1,1-disubstituted alkyl vinyl sulfides via rhodium-catalyzed alkyne hydrothiolation: scope and limitations. J Org Chem 74:182–187

    Article  CAS  Google Scholar 

  67. Burling S, Field LD, Messerle BA, Vuong KQ, Turner P (2003) Rhodium(I) and iridium(I) complexes with bidentate N,N and P,N ligands as catalysts for the hydrothiolation of alkynes. Dalton Trans 4181–4191

    Google Scholar 

  68. Field LD, Messerle BA, Vuong KQ, Turner P (2009) Rhodium(I) and iridium(I) complexes containing bidentate phosphine-imidazolyl donor ligands as catalysts for the hydroamination and hydrothiolation of alkynes. Dalton Trans 3599–3614

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishii, A., Nakata, N. (2011). The Mechanism for Transition-Metal-Catalyzed Hydrochalcogenation of Unsaturated Organic Molecules. In: Ananikov, V., Tanaka, M. (eds) Hydrofunctionalization. Topics in Organometallic Chemistry, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2011_16

Download citation

Publish with us

Policies and ethics