Skip to main content

Combining views on concepts in unsupervised concept learning

  • Machine Learning II
  • Conference paper
  • First Online:
PRICAI'96: Topics in Artificial Intelligence (PRICAI 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1114))

Included in the following conference series:

  • 114 Accesses

Abstract

Classical, prototype and exemplar views on concepts are combined in an unsupervised concept learning system. A flexible matching procedure, which interprets the concept hierarchy in using additional probabilistic and instance-based recognition constraints, allows the system to improve its inference performance. This paper describes the system and evaluates experimentally its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiman, L., Friedman, J., Olshen, R. and Stone, C.: Classification and regression trees, Belmont, CA: Wadsworth (1984).

    Google Scholar 

  2. Carpineto, C. and Romano G.: GALOIS: An order-theoretic approach to conceptual clustering. Proc. 10th Int. Conf. on Machine Learning, Amherst, pp. 33–40 (1993).

    Google Scholar 

  3. Cheeseman, P. and Stutz, J.: Bayesian Classification (AutoClass): Theory and Results. Advances in Knowledge Discovery and Data Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds). The AAAI Press, pp. 61–83 (1995).

    Google Scholar 

  4. Fisher, D.: Knowledge acquisition via incremental conceptual clustering, Machine Learning, Vol. 2, pp. 139–172 (1987).

    Google Scholar 

  5. Godin, R. and Missaoui, R.: An incremental concept formation approach for learning from databases. Theoretical Computer Science, 133, pp. 387–419 (1994).

    Google Scholar 

  6. Ho, T.B.: An approach to concept formation based on formal concept analysis. IEICE Trans. Information and Systems, Vol. E78-D, No. 5, 553–559 (1995).

    Google Scholar 

  7. Ho, T.B.: Integrating inductive learning and knowledge acquisition in the expert system generator TESOR. Proc. 3rd World Congress on Expert Systems, Seoul, pp. 925–932 (1996).

    Google Scholar 

  8. Kangassalo, H.: “On the concept of concept for conceptual modelling and concept detection”, in Information Modelling and Knowledge Bases III, S. Ohsuga et al. (Eds.), IOS press, pp. 17–58 (1992).

    Google Scholar 

  9. Langley, P.: Elements of Machine Learning, Morgan Kaufmann (1996).

    Google Scholar 

  10. McKusick, K.B. and Langley, P.: Constraint on tree structure in concept formation. Proc. Int. Joint Conf. on Artificial Intelligence, IJCAI'91, pp. 810–816 (1991).

    Google Scholar 

  11. Mephu Nguifo, E.: Galois lattice: A framework for concept learning. Proc. 6th IEEE Int. Conf. Tools with Artificial Intelligence TAI'94, New Orleans, pp. 461–467 (1994).

    Google Scholar 

  12. Michalski R. S. and Stepp R. E.: Learning from observation: conceptual learning. Machine Learning: An Artificial Intelligence Approach, Vol. 1, R. S. Michalski, J. G. Carbonelle, T. M. Michell (Eds.), Morgan Kaufmann, pp. 331–363 (1983).

    Google Scholar 

  13. Michalski, R.S.: “Learning flexible concepts: Fundamental ideas and a method based on two-tiered representation”, in R. S. Michalski and Y. Kodratoff (Eds.), Machine Learning: An Artificial Intelligence Approach, Vol. III, Morgan Kaufmann (1990).

    Google Scholar 

  14. Mitchell, T.: Generalization as search. Artificial Intelligence, 18, pp. 203–226 (1982).

    Google Scholar 

  15. Quinlan, J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann (1993).

    Google Scholar 

  16. Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., DeJong, K., Dzeroski, S., Fahlman, S.E., Fisher, D., Hamann, R., Kaufman, K., Keller, S., Kononenko, I., Kreuziger, J., Michalski, R.S., Mitchell, T., Pachowicz, P., Reich, Y., Vafaie, H., Van de Welde, W., Wenzel, W., Wnek, J., Zhang, J.: The monks problems: a performance comparison of different learning algorithms. Technical report CMU-CS-91-197, Carnegie Mellon University (1991).

    Google Scholar 

  17. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. Ordered Sets, I. Rival (Ed.), Reidel, pp. 445–470 (1982).

    Google Scholar 

  18. Wille, R.: Concept lattice and conceptual knowledge systems. Computers and Mathematics with Applications, Vol. 23, pp. 493–515 (1992).

    Google Scholar 

  19. Wrobel, S., Concept Formation and Knowledge Revision, Kluwer Academic Publishers (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Norman Foo Randy Goebel

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ho, T. (1996). Combining views on concepts in unsupervised concept learning. In: Foo, N., Goebel, R. (eds) PRICAI'96: Topics in Artificial Intelligence. PRICAI 1996. Lecture Notes in Computer Science, vol 1114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61532-6_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-61532-6_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61532-3

  • Online ISBN: 978-3-540-68729-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics