Skip to main content

Ab initio calculations on electron-transfer catalysis by metal ions

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 177))

Abstract

The use of ab initio molecular orbital theory to treat electron-transfer catalysis by metal ions and closely related subjects is described. The theoretical principles involved in “hole-catalysis” (acceleration of a reaction by one-electron oxidation) are first examined using the norbornadiene/quadricyclane radical cation rearrangement as an example. The theoretical techniques necessary to obtain reliable results for radical and radical ion systems are also discussed. Examples of calculational studies on hole-catalyzed cycloadditions, sigmatropic rearrangements and electrocyclic reactions are given. The basic principles governing the energetics of electron-transfer between metal ions and organic substrates are described. Finally, calculational examples of electron-transfer catalysis by metal ions are treated. The examples include 1,3-hydrogen shifts, cyclopropane ring-opening, ethylene dimerization, C-C bond activation, and cycloalkane and oxirane ring-opening.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. For a review, see Bauld NL (1989) Tetrahedron 45: 5307

    Google Scholar 

  2. See, for instance, Schmittel M, von Seggern H (1993) J Am Chem Soc 115: 2165

    Google Scholar 

  3. For a recent example, see Furuzumi S, Okamoto T (1993) ibid 115: 11600

    Google Scholar 

  4. See, for instance, Viggiano AA, Deakyne CA, Dale F, Paulson JF (1987) J Chem Phys 87: 6544

    Google Scholar 

  5. Longuet-Higgins HC, Abrahamson EW (1965) J Am Chem Soc 87: 2045

    Google Scholar 

  6. Woodward RB, Hofmann R (1965) ibid 87: 395

    Google Scholar 

  7. Bauld NL, Cessac J (1977) ibid 99: 23

    Google Scholar 

  8. Bischof P (1977) ibid 99: 8145

    Google Scholar 

  9. Haselbach E, Bally T, Lanyiova Z (1979) Helvetica Chimica Acta 62: 577

    Google Scholar 

  10. Haselbach E, Bally T, Lanyiova Z, Baertschi P (1979) ibid 62: 583

    Google Scholar 

  11. Marcus RA (1956) J Chem Phys. 24: 966,979; (1963) J Phys Chem 67: 853, 2889; (1964) Ann Rev Phys Chem 15: 155; (1965) J. Chem Phys. 43: 679; Marcus RA, Sutin N (1985) Biochemica Physica Acta 811: 265; Sumi H, Marcus RA (1986) J Chem Phys 84: 4894; Hush NS (1961) J Chem Soc Trans Faraday Soc 57: 557; (1967) Prog Inorg CHem 8: 391; (1968) Electrochimica Acta 13: 1005; Newton MD, Sutin N (1984) Ann Tev Phys Chem 35; 437; Sutin N (1983) Prog Inorg Chem 30: 441

    Google Scholar 

  12. Ishiguro K, Khudyakov IV, McGarry PF, Turro NJ, Roth HD (1994) J Am Chem Soc 116: 6933.

    Google Scholar 

  13. Bauld NL, Cessac J, Chang C-S, Farr FR, Holloway R (1976) ibid 98: 4561; Bauld NL, Farr FR (1969) ibid 91: 2788

    Google Scholar 

  14. Lorenz M, Clark T, Schleyer PvR, Neubauer K, Grampp G (1992) J Chem Soc Chem Commun 101

    Google Scholar 

  15. Rieke RD, Bales SE, Hudnall PM, Meares CF (1969) J Am Chem Soc 91: 2788; Bauld NL, Farr FR, Stevenson GR (1970) Tetrahedron Lett. 9: 625

    Google Scholar 

  16. Slater JC (1951) Phys Rev 82: 538; Pople JA, Nesbet RK (1954) J Chem Phys 22: 571; Berthier G (1954) J Chim Phys 51: 363; Amos AT, Hall GG (1961) Proc Roy Soc London Ser A 263: 483

    Google Scholar 

  17. McWeeny R, Dierksen G (1968) J Chem Phys 49: 4852

    Google Scholar 

  18. Møller C, Plesset MS (1934) Phys Rev 46: 618; Pople JA, Seeger R, Krishnan R (1977) Int J Quantum Chem Symp 11: 149; Krishnan R, Pople JA (1978) Int J Quantum Chem 14: 91; Krishnan R, Frisch MJ, Pople JA (1980) J Chem Phys 72: 4244

    Google Scholar 

  19. Nobes RH, Pople JA, Radom L, Handy NC, Knowles PJ (1993) J Am Chem Soc 115: 1507; Gill PMW, Pole JA, Radom L, Nobes RH (1988) J Chem Phys 89: 7307; Nobes RH, Moncrieff D, Wong MW, Radom L, Gill PMW, Pople JA (1991) Chem Phys Lett 182: 216

    Google Scholar 

  20. Simandiras ED, Handy NC, Amos RD (1987) Chem Phys Lett 133: 324; Simandiras ED, Handy NC, Amos RD, Lee TJ, Rice JE, Remington RB, Schaeffer HF III (1988) J Am Chem Soc 110: 1388

    Google Scholar 

  21. See for instance, Paldus, J (1990) in Self-Consistent Field (Studies in Physical and Theoretical Chemistry 70) Carbó R, Klobukowski M (eds) Elsevier, Amsterdam, p 1

    Google Scholar 

  22. Alex A, Clark T (1992) J Am Chem Soc 114: 506

    Google Scholar 

  23. Gauld JW, Radom L (1994) J Phys Chem 98: 777

    Google Scholar 

  24. Yates BF, Bouma WJ, Radom L (1984) J Am Chem Soc 106: 5805

    Google Scholar 

  25. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) ibid 94: 7221; Curtiss LA, Jones C, Trucks GW, Raghavachari K, Pople JA (1990) J Chem Phys 93, 2537

    Google Scholar 

  26. Wong WW, Radom L (1993) J Am Chem Soc 115: 1507

    Google Scholar 

  27. Merer AJ, Schoonveld L (1969) Can J Phys 47: 1731; Köppel H, Domcke W, Cederbaum LS, Niessen Wv (1978) J Chem Phys 69: 4252

    Google Scholar 

  28. Lunell S, Eriksson LA, Huang M-B (1991) J Mol Struct (THEOCHEM) 230: 263; Handy NC, Nobes RH, Werner H-J (1984) Chem Phys Lett 110: 459

    Google Scholar 

  29. Dewar MJS, Thiel W (1977) J Am Chem Soc 99: 4899

    Google Scholar 

  30. Belville DJ, Bauld NL (1982) ibid 104: 294

    Google Scholar 

  31. Clark T, Nelsen SF (1988) ibid 110: 868

    Google Scholar 

  32. Eriksson LA, Lunell S, Boyd, RJ (1993) ibid 115: 6896

    Google Scholar 

  33. Clark T, manuscript in preparation

    Google Scholar 

  34. Wong MW, Radom L (1995) J Phys Chem 99: 8582; I thank Prof. Radom for a preprint of this work.

    Google Scholar 

  35. See, for instance, Meyer R, Graf FA, Ha T-K, Guntard HS (1979) Chem Phys Lett 66: 65; Borden WT, Davidson ER (1979) J Am Chem Soc 101: 3771

    Google Scholar 

  36. Eriksson LA, Lunell S (1992) ibid 114: 4532

    Google Scholar 

  37. Krogh-Jespersen K, Roth HD (1992) ibid 114: 8388

    Google Scholar 

  38. Clark T (1984) J Chem Soc Faraday Disc 78: 203

    Google Scholar 

  39. Stockdale JA, Davis FJ, Compton RN, Klots GE (1974) J Chem Phys 60: 4279; Compton RN, Reinhardt PW, Copper D (1978) ibid 68: 4360

    Google Scholar 

  40. Williams F, Sprague ED (1982) Accts Chem Res 15: 408

    Google Scholar 

  41. Canadell E, Karafiloglou P, Salem L (1980) J Am Chem Soc 102: 855

    Google Scholar 

  42. Clark T (1984) J Chem Soc Chem Commun 93

    Google Scholar 

  43. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56: 2257; Kariharan PC, Pople JA (1973) Thoer Chim Acta 28: 213; Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comput Chem 4: 294

    Google Scholar 

  44. Tada T, Yoshimura R (1992) J Am Chem Soc 114: 1593

    Google Scholar 

  45. Clark T (1985) J Chem Soc Chem Commun 529

    Google Scholar 

  46. Pabon RA, Bauld NL (1984) J Am Chem Soc 106: 1145

    Google Scholar 

  47. Jungwirth P, Čársky P, Bally T (1993) ibid 115: 5776

    Google Scholar 

  48. Jungwirth P, Bally T (1993) ibid 115: 5783

    Google Scholar 

  49. Fujisawa J, Sato S, Shimokoshi K (1986) Chem Phys Lett 124: 391

    Google Scholar 

  50. Alvarez-Idaboy JR, Eriksson LA, Fangstrom T, Lunell S (1993) J Phys Chem 97: 12737

    Google Scholar 

  51. Lee T-S, Lien M-H, Sen S-F, Wu H-F, Gau Y-F, Chang T-Y (1988) J Mol Struct (THEOCHEM) 121: 47

    Google Scholar 

  52. Alvarez-Idaboy JR, Eriksson LA, Lunell S (1993) J Phys Chem 97: 12742

    Google Scholar 

  53. Bauld NL (1992) J Am Chem Soc 114: 5800

    Google Scholar 

  54. Belville DJ, Bauld NL (1982) ibid 104: 2665; Bauld NL, Belville DJ, Pabon RA, Chelsky R, Green G (1983) ibid 105: 2378

    Google Scholar 

  55. Heinrich N, Koch W, Morrow JC, Schwarz H (1988) ibid 110: 6332

    Google Scholar 

  56. Bernardi F, Robb MA, Schlegel HB, Tonachini G (1984) ibid 106: 1198

    Google Scholar 

  57. Clark T (1987) ibid 109: 6838

    Google Scholar 

  58. Du P, Hrovat DA, Borden WT (1988) ibid 110: 3406

    Google Scholar 

  59. Nguyen MT, Landuyt L, Vanquickenborne LG (1991) Chem Phys Lett 182: 223

    Google Scholar 

  60. Bauld NL (1990) J Comput Chem 11: 896

    Google Scholar 

  61. Wayner DDM, Boyd RJ, Arnold DR (1985) Can J Chem 63: 3283

    Google Scholar 

  62. Lunell S, Yin L, Huang m-B (1989) Chem Phys. 139: 283

    Google Scholar 

  63. Snow LD, Williams (1988) Chem Phys Lett 143: 521; Symons MCR, Wyatt JL (1988) ibid 146: 473

    Google Scholar 

  64. Cimiraglia R, Miertus S, Tomasi J (1980) J Mol Struct 62: 249

    Google Scholar 

  65. Bouma WJ, MacLeod J, Radom L (1971) J Am Chem Soc 101: 5540

    Google Scholar 

  66. Clark T (1984) J Chem Soc Chem Commun 666

    Google Scholar 

  67. Bouma WJ, Poppinger D, Saebo S, MacLeod J, Radom L (1984) Chem Phys Lett 104: 198

    Google Scholar 

  68. Belville DJ, Chelsky R, Bauld NL (1982) J Comput Chem 3: 548

    Google Scholar 

  69. Hänsele E, Clark T (1991) Zeitschrift für Physikalische Chemie 171: 21

    Google Scholar 

  70. Alex A, Clark T, manuscript in preparation; Alex A, Ph.D. Thesis Universität Erlangen-Nürnberg 1993

    Google Scholar 

  71. Clark T (1989) J Am Chem Soc 111: 761

    Google Scholar 

  72. Alex A, Clark T (1992) ibid 114: 10897

    Google Scholar 

  73. Rusli RD, Schwarz H (1990) Chem Ber 123: 535

    Google Scholar 

  74. Bäckvall J-E, Björkmann EE, Petterson L, Siegbahn PEM, Strich A (1985) J Am Chem Soc 107: 7408

    Google Scholar 

  75. Clark T (1988) ibid 110: 1672

    Google Scholar 

  76. Foster JP, Weinhold F (1980) J Am Chem Soc 102: 7211; Reed AE, Weinhold F (1983) JChem Phys. 78: 4066; Reed AE, Weinstock RB, Weinhold F (1985) ibid 83: 735; Reed AE, Weindhold F (1985) ibid 83: 1736; Carpenter JE, Weinhold F (1988) J Mol Struct (THEOCHEM) 169: 41; Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88: 899

    Google Scholar 

  77. Siegbahn PEM, Blomberg MRA (1992) J Am Chem Soc 114: 10548

    Google Scholar 

  78. Svennsson MJ, Blomberg MRA, Siegbahn PEM (1991) ibid 113: 7076; (1992) ibid 114: 6095

    Google Scholar 

  79. Blomberg MRA, Siegbahn PEM, Svennsson MJ (1992) J Phys Chem 96: 5783

    Google Scholar 

  80. Boche G, Wintermayr H (1981) Angew Chemie 93: 923

    Google Scholar 

  81. Clark T (1986) J Chem Soc Chem Commun 1774

    Google Scholar 

  82. Onciul ARv, Clark T (1989) ibid 1082

    Google Scholar 

  83. Hofmann H, Clark T (1991) J Phys Chem 98: 13797

    Google Scholar 

  84. Hofmann H, Clark T (1994) J Am Chem Soc 111: 761

    Google Scholar 

  85. Hofmann H, Clark T (1990) Angew Chemie 102: 697

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Mattay

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Clark, T. (1996). Ab initio calculations on electron-transfer catalysis by metal ions. In: Mattay, J. (eds) Electron Transfer II. Topics in Current Chemistry, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60110-4_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-60110-4_1

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60110-4

  • Online ISBN: 978-3-540-49526-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics