Skip to main content

Dynamic Grid Adaptation for Computational Magnetohydrodynamics

  • Conference paper
  • First Online:
High Performance Computing and Networking (HPCN-Europe 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1823))

Included in the following conference series:

Abstract

In many plasma physical and astrophysical problems, both linear and nonlinear effects can lead to global dynamics that induce, or occur simultaneously with, local phenomena. For example, a magnetically confined plasma column can potentially posses global magnetohydrodynamic (MHD) eigenmodes with an oscillation frequency that matches a local eigenfrequency at some specific internal radius. The corresponding linear eigenfunctions then demonstrate large-scale perturbations together with fine-scale resonant behaviour. A well-known nonlinear effect is the steepening of waves into shocks where the discontinuities that then develop can be viewed as extreme cases of ‘short wavelength’ features. Numerical simulations of these types of physics problems can benefit greatly from dynamically controlled grid adaptation schemes.

Here, we present a progress report on two different approaches that we envisage to evaluate against each other and use in multi-dimensional hydro- and magnetohydrodynamic computations. In r-refinement, the number of grid points stays fixed, but the grid ‘moves’ in response to persistent or developing steep gradients. First results on 1D and 2D MHD model problems are presented. In h-refinement, the resolution is raised locally without moving individual mesh points. We show 2D hydrodynamic ‘shock tube’ evolutions where hierarchically nested patches of subsequently finer grid spacing are created and destroyed when needed. This adaptive mesh refinement technique will be further implemented in the Versatile Advection Code, so that its functionality carries over to any set of near conservation laws in one, two, or three space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, M.J.: Data structures for adaptive grid generation, SIAM J. Sci. Stat. Comput. 7(3), 904 (1986)

    Article  MATH  Google Scholar 

  2. Boris, J.P., Book, D.L.: Flux-corrected transport. I.SHASTA, A fluid transport algorithm that works, J. Comput. Phys. 11, 38 (1973)

    Article  Google Scholar 

  3. De Sterck, H., Low, B.C., Poedts, S.: Characteristic analysis of a complex two-dimensional magnetohydrodynamic bow shock flow with steady compound shocks, Phys. of Plasmas 6, 954 (1999)

    Article  Google Scholar 

  4. Dorfi, E.A., Drury, L. O’C.: Simple adaptive grids for 1-D initial value problems, J. Comput. Phys. 69, 175 (1987)

    Article  MATH  Google Scholar 

  5. Friedel, H., Grauer, R., Marliane, C.: Adaptive mesh Refinement for Singular Current Sheets in Incompressible Magnetohydrodynamic Flows, J. Comput. Phys. 134, 190–198 (1997)

    Article  MATH  Google Scholar 

  6. Harten, A.: High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49, 357 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Keppens, R., Tóth, G.: Simulating Magnetized Plasmas with the Versatile Advection Code, in VECPAR’98-Third International Conference for Vector and Parallel Processing, Lecture Notes in Computer Science, 1573, edited by J. M. L. M. Palma, J. Dongarra and V. Hernandez p. 680–690 (Springer-Verlag, 1999)

    Chapter  Google Scholar 

  8. Keppens, R., Tóth, G., Westermann, R.H.J., Goedbloed, J.P.: Growth and saturation of the Kelvin-Helmholtz instability with parallel and anti-parallel magnetic fields, J. Plasma Phys. 61, 1 (1999)

    Article  Google Scholar 

  9. Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T. I., De Zeeuw, D.L.: A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics, J. Comput. Phys. 154, 284–309 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Steiner, O., Knölker, M., Schüssler, M.: Dynamic interaction of convection with magnetic flux sheets: first results of a new MHD code, in Proc. NATO advanced research workshop ASI Series C-433, Solar Surface Magnetism, edited by R.J. Rutten and C.J. Schrijver, p. 441–470 (Kluwer Dordrecht, 1994)

    Google Scholar 

  11. Stenuit, H., Keppens, R., Goossens, M.: Eigenfrequencies and optimal driving frequencies of 1D non-uniform magnetic flux tubes, Astron. & Astrophys. 331, 392 (1998)

    Google Scholar 

  12. Tóth, G.: Versatile Advection Code, in Proceedings of High Performance Computing and Networking Europe 1997, Lecture Notes in Computer Science, 1225, edited by B. Hertzberger and P. Sloot, p. 253–262 (Springer-Verlag, 1997)

    Chapter  Google Scholar 

  13. Tóth, G.: The LASY Preprocessor and its Application to General Multi-Dimensional Codes, J. Comput. Phys. 138, 981 (1997)

    Article  MATH  Google Scholar 

  14. Tóth, G., Keppens, R.: Comparison of Different Computer Platforms for Running the Versatile Advection Code, in Proceedings of High Performance Computing and Networking Europe 1998, Lecture Notes in Computer Science, 1401, edited by P. Sloot, M. Bubak and B. Hertzberger p. 368–376 (Springer-Verlag, 1998)

    Chapter  Google Scholar 

  15. Tóth, G., Keppens, R., Botchev, M. A.: Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests, Astron. & Astrophys. 332, 1159 (1998)

    Google Scholar 

  16. Weiss, N.O.: The expulsion of magnetic flux by eddies, Proc. Roy. Soc. A 293, 310 (1966)

    Article  Google Scholar 

  17. Zegeling, P.A.: r-refinement for evolutionary PDEs with finite elements or finite differences, Applied Numer. Math. 26, 97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zegeling, P.A., Keppens, R.: Adaptive Method of Lines for Magneto-Hydrodynamic PDE Models, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keppens, R., Nool, M., Zegeling, P.A., Goedbloed, J.P. (2000). Dynamic Grid Adaptation for Computational Magnetohydrodynamics. In: Bubak, M., Afsarmanesh, H., Hertzberger, B., Williams, R. (eds) High Performance Computing and Networking. HPCN-Europe 2000. Lecture Notes in Computer Science, vol 1823. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45492-6_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45492-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67553-2

  • Online ISBN: 978-3-540-45492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics