Skip to main content

Verification within the KARO Agent Theory

  • Conference paper
  • First Online:
Formal Approaches to Agent-Based Systems (FAABS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1871))

Included in the following conference series:

Abstract

This paper discusses automated reasoning in the KARO framework. The KARO framework accommodates a range of expressive modal logics for describing the behaviour of intelligent agents. We concentrate on a core logic within this framework, in particular, we describe two new methods for providing proof methods for this core logic, discuss some of the problems we have encountered in their design, and present an extended example of the use of the KARO framework and the two proof methods.

This research was supported by a travel grant of the Netherlands Organization for Scientific Research (NWO) and the British Council under the UK-Dutch Joint Scientific Research Programme JRP 442.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Bachmair and H. Ganzinger. Resolution theorem proving. To appear in J.A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning.

    Google Scholar 

  2. M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent systems (extended abstract). In Proc. ATAL-98, volume 1555 of LNAI. Springer, 1999.

    Google Scholar 

  3. A. Bolotov and M. Fisher. A clausal resolution method for ctl branching time temporal logic. Journal of Experimental and Theoretical Artificial Intelligence, 11:77–93, 1999.

    Article  MATH  Google Scholar 

  4. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. on Programming Languages and Systems, 8(2):244–263, 1986.

    Article  MATH  Google Scholar 

  5. H. de Nivelle. Translation of S4 into GF and 2VAR. Manuscript, May 1999.

    Google Scholar 

  6. H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-based methods for modal logics. Logic Journal of the IGPL, 8(3):265–292, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Dixon, M. Fisher, and A. Bolotov. Resolution in a Logic of Rational Agency. In Proc. ECAI 2000, pages 358–362. IOS Press, 2000.

    Google Scholar 

  8. C. Dixon, M. Fisher, and M. Wooldridge. Resolution for temporal logics of knowledge. Journal of Logic and Computation, 8(3):345–372, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Fermüller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Method for the Decicion Problem, volume 679 of LNCS. Springer, 1993.

    Google Scholar 

  10. M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. ACM Transactions on Computational Logic, 2(1), 2001.

    Google Scholar 

  11. R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 297–396. Kluwer, 1999.

    Google Scholar 

  12. J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge and time I: Lower bounds. Journal of Computer and System Sciences, 38:195–237, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  13. U. Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order Logic. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 1999.

    Google Scholar 

  14. U. Hustadt, C. Dixon, R. A. Schmidt, and M. Fisher. Normal forms and proofs in combined modal and temporal logics. In Proc. FroCoS’2000, volume 1794 of LNAI, pages 73–87. Springer, 2000.

    Google Scholar 

  15. U. Hustadt and R. A. Schmidt. Using resolution for testing modal satisfiability and building models. To appear in the Journal of Automated Reasoning, 2001.

    Google Scholar 

  16. B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer. Formalizing abilities and opportunities of agents. Fundamenta Informaticae, 34(1,2):53–101, 1998.

    MATH  MathSciNet  Google Scholar 

  17. G. Mints. Gentzen-type systems and resolution rules. Part I: Propositional logic. In Proc. COLOG-88, volume 417 of LNCS, pages 198–231. Springer, 1990.

    Google Scholar 

  18. H. J. Ohlbach. Combining Hilbert style and semantic reasoning in a resolution framework. In Proc. CADE-15, volume 1421 of LNAI, pages 205–219. Springer, 1998.

    Google Scholar 

  19. D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation. Journal of Symbolic Computation, 2:293–304, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. S. Rao and M. P. Georgeff. Modeling agents withing a BDI-architecture. In Proc. KR-91, pages 473–484. Morgan Kaufmann, 1991.

    Google Scholar 

  21. R. A. Schmidt. Decidability by resolution for propositional modal logics. Journal of Automated Reasoning, 22(4):379–396, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer. Communicating rational agents. In Proc. KI-94, volume 861 of LNAI, pages 202–213. Springer, 1994.

    Google Scholar 

  23. B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer. Howto motivate your agents. In Intelligent Agents II, volume 1037 of LNAI. Springer, 1996.

    Google Scholar 

  24. C. Weidenbach et al. System description: spass version 1.0.0. In Proc. CADE-16, volume 1632 of LNAI, pages 378–382. Springer, 1999.

    Google Scholar 

  25. G. Weiß, editor. Multiagent systems: A modern approach to distributed artificial intelligence. MIT Press, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hustadt, U., Dixon, C., Schmidt, R.A., Fisher, M., Meyer, JJ., van der Hoek, W. (2001). Verification within the KARO Agent Theory. In: Rash, J.L., Truszkowski, W., Hinchey, M.G., Rouff, C.A., Gordon, D. (eds) Formal Approaches to Agent-Based Systems. FAABS 2000. Lecture Notes in Computer Science(), vol 1871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45484-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45484-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42716-2

  • Online ISBN: 978-3-540-45484-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics