Skip to main content

Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies

  • Conference paper
Book cover Parallel Problem Solving from Nature PPSN VI (PPSN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1917))

Included in the following conference series:

Abstract

A conceptual objective behind the self-adaptation of the mutation distribution is to achieve invariance against certain transformations of the search space. In this paper, a priori invariances of a simple evolution strategy and invariances, which can be introduced by self-adaptation, are identified. In principle, correlated mutations can achieve invariance against any linear transformation of the search space. Correlated mutations, as typically implemented, are investigated with respect to both a priori and new invariances. Simulations reveal that neither all a priori invariances are retained, nor the invariance against linear transformation is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas Bäck, Uwe Hammel, and Hans-Paul Schwefel. Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3–17, 1997.

    Article  Google Scholar 

  2. Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1(1):1–23, 1993.

    Google Scholar 

  3. Nikolaus Hansen. Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategic Eine Untersuchung zur entstochastisierten, koordinatensystemunab-hängigen Adaptation der Mutationsverteilung. Mensch und Buch Verlag, Berlin, 1998. ISBN 3-933346-29-0.

    Google Scholar 

  4. Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, pages 312–317, 1996.

    Google Scholar 

  5. Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 2000. To appear.

    Google Scholar 

  6. Nikolaus Hansen, Andreas Ostermeier, and Andreas Gawelczyk. On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. In L. Eshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 57–64, Pittsburgh, 1995. Morgan Kaufmann, San Fransisco.

    Google Scholar 

  7. Christian Holzheuer. Analyse der Adaptation von Verteilungsparametern in der Evolutionsstrategie. Diploma thesis, Fachgebiet Bionik und Evolutionstechnik der Technischen Universität Berlin, 1996.

    Google Scholar 

  8. Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Berlin Heidelberg New York, 1996. Third edition.

    MATH  Google Scholar 

  9. Ingo Rechenberg. Evolutionsstrategie’ 94. frommann-holzboog, Stuttgart, 1994.

    Google Scholar 

  10. Günter Rudolph. On correlated mutations in evolution strategies. In R. Manner and B. Manderick, editors, Parallel Problem Solving from Nature, 2, Proceedings, pages 105–114, Brüssel, 1992. North-Holland.

    Google Scholar 

  11. Ralf Salomon. Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems, 39(3):263–278, 1996.

    Article  Google Scholar 

  12. Hans-Paul Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester, 1981.

    MATH  Google Scholar 

  13. Hans-Paul Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. John Wiley & Sons Inc., New York, 1995.

    Google Scholar 

  14. Patrick D. Surry and Nicholas J. Radcliffe. Formal algorithms + formal representations = search strategies. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature—PPSN IV, Proceedings, pages 366–375, Berlin, 1996. Springer, Berlin.

    Chapter  Google Scholar 

  15. D. Whitley, K. Mathias, S. Rana, and J. Dzubera. Evaluating evolutionary algorithms. Artificial Intelligence, 85:245–276, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hansen, N. (2000). Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. In: Schoenauer, M., et al. Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45356-3_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-45356-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41056-0

  • Online ISBN: 978-3-540-45356-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics