Skip to main content

On Solving Large-Scale Weighted Least Squares Problems

  • Conference paper
  • First Online:
  • 1268 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1988))

Abstract

A sequence of least squares problems of the form minyG 1/2(A T y - h)∥2 where G is an nxn positive definite diagonal weight matrix, and A an mxn (m < n) sparse matrix with some dense columns; has many applications in linear programming, electrical networks, elliptic boundary value problems, and structural analysis. We discuss a technique for forming low-rank correction preconditioners for such problems. Finally we give numerical results to illustrate this technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baryamureeba, V.: Solution of large-scale weighted least squares problems. Technical Report No. 186, March 22, 2000 (Revised March 31, 2000) Department of Informatics, University of Bergen, 5020 Bergen, Norway. Submitted to Numerical Linear Algebra with Applications.

    Google Scholar 

  2. Baryamureeba, V., Steihaug, T.: Computational issues for a new class of preconditioners. Edited by Michael Griebel, Svetozar Margenov, and Plamen Yalamov, Large-Scale Scientific Computations of Engineering and Environmental Problems II, In Series Notes on Numerical Fluid Mechanics, VIEWEG. (2000) 73 128–135.

    Google Scholar 

  3. V. Baryamureeba, T. Steihaug, and Y. Zhang, Properties of a class of preconditioners for weighted least squares problems. Technical Report No. 170, Department of Informatics, University of Bergen, 5020 Bergen, Norway, April 30, 1999 (Revised July 6, 1999). Submitted to Mathematical Programming.

    Google Scholar 

  4. Gay, D. M.: Electronic mail distribution of linear programming test problems. Mathematical Programming Society COAL Newsletter (1985) 10–12.

    Google Scholar 

  5. Wang, W., O’Leary, D. P.: Adaptive use of iterative methods in interior point methods for linear programming. Computer Science Department Report CS-TR-3560, Institute for Advanced Computer Studies Report UMIACS-95-111, University of Maryland, 1995.

    Google Scholar 

  6. Wang, W., O’Leary, D. P.: Adaptive use of iterative methods in predictor-corrector interior point methods for linear programming. Technical Report No. CS-TR-4011, Computer Science Department, University of Maryland, April 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baryamureeba, V. (2001). On Solving Large-Scale Weighted Least Squares Problems. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2000. Lecture Notes in Computer Science, vol 1988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45262-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45262-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41814-6

  • Online ISBN: 978-3-540-45262-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics