Skip to main content

Evolving Consensus Sequence for Multiple Sequence Alignment with a Genetic Algorithm

  • Conference paper
  • First Online:
Book cover Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2724))

Included in the following conference series:

Abstract

In this paper we present an approach that evolves the consensus sequence [25] for multiple sequence alignment (MSA) with genetic algorithm (GA). We have developed an encoding scheme such that the number of generations needed to find the optimal solution is approximately the same regardless the number of sequences. Instead it only depends on the length of the template and similarity between sequences. The objective function gives a sum-of-pairs (SP) score as the fitness values. We conducted some preliminary studies and compared our approach with the commonly used heuristic alignment program Clustal W. Results have shown that the GA can indeed scale and perform well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Carroll, R.J., and Lipman, D. Weights for data related by a tree. Journal of Molecular Biology, 207: 647–653 (1989).

    Article  Google Scholar 

  2. Altschul, S.F. and Lipman, D. Trees, stars, and multiple sequence alignment. SIAM Journal of Applied Mathematics, 49: 197–209 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  3. Altschul, S.F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. Basic local alignment search tool. Journal of Molecular Biology, 215(3):403–410 (1990).

    Google Scholar 

  4. Day, W.H. and McMorris, F.R. The computation of consensus patterns in DNA sequence. Mathematical and Computational Model. 17, 49–52 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  5. Carrillo, H. and Lipman, D. The multiple sequence alignment problem in biology. SIAM Journal of Applied Mathematics, 48: 1073–1082 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  6. Carroll, S.B., Grenier, J.K., and Weatherbee, S.D. From DNA to diversity: molecular genetics and the evolutionary of animal designs. Malden, MA: Blackwell Science (2001).

    Google Scholar 

  7. Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge, UK: Cambridge University (1998).

    MATH  Google Scholar 

  8. Fogel, D.B. and Corne, D.W. (ed.). Evolutionary Computation in Bioinformatics. San Fran-cisco, CA: Morgan Kaufmann Publishers (2003).

    Google Scholar 

  9. Feng, D. and Doolittle, R.F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolutionary, 25: 351–360 (1987).

    Article  Google Scholar 

  10. Graur, D. and Li, W.H. Fundamental of Molecular Evolution, 2nd ed. Sunderland, MA: Sinauer Associates (2000).

    Google Scholar 

  11. Wang, L., and Gusfield, D. Improved approximation algorithms for tree alignment. Journal of Algorithms, 25: 255–273 (1998)

    Article  MathSciNet  Google Scholar 

  12. Gusfield, D. Algorithms on strings, trees and sequences: computer science and computational biology. New York, NY: Cambridge University Press (1997).

    MATH  Google Scholar 

  13. Hall, B.G. Phylogenetics trees made easy: a how-to manual for molecular biologists. Sunderland, MA: Sinauer Associates (1997).

    Google Scholar 

  14. Needleman, S.B. and Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. of Mol. Biol. 48: 443–453 (1970).

    Article  Google Scholar 

  15. Sean, R.E. A memory-efficient dynamic programming algorithm for optimal alignment of sequence to an RNA secondary structure. BMC Bioinformatics, 3: 13 (2002).

    Article  Google Scholar 

  16. Sauder, J., Arther, J., and Dunbrack, R. Large-scale of comparison of protein sequence alignment algorithms with structure alignments. Proteins: structures, function, and genetics, 40: 6–32 (2000).

    Article  Google Scholar 

  17. Setubal, J. and Meidanis, J. Introduction to computational molecular biology. Boston, MA: PWS Publishing (1997).

    Google Scholar 

  18. Stoye, J., Perry, S.W., and Dress, A.W.M. Improving the divide-and-conquer approach to sum-of-pairs multiple sequence alignment. Applied Mathematical Literature, vol. 10, no. 2, pp. 67–73 (1997).

    Article  MATH  Google Scholar 

  19. Thomsen, R., Fogel, G.B., and Kirnk, T. A Clustal alignment improver using evolutionary algorithms. Congress on Evolutionary Computation, vol. 1; p. 121–126 (2002).

    Google Scholar 

  20. Thompson, J.D., Higgins, D.G., and Gibson, T.J. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673–4680 (1994).

    Article  Google Scholar 

  21. Thompson, J. D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24: 4876–4882 (1997).

    Article  Google Scholar 

  22. Wang, L. and Jiang, T. On the complexity of multiple sequence alignment. Journal of Computational Biology, 1: 337–348 (1994).

    Article  Google Scholar 

  23. Waterman, S.M. and Eggert, M. A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. J. of Molecular Biology, 197: 723–725 (1987).

    Article  Google Scholar 

  24. Whitley, D. A genetic algorithm tutorial. Statistics and Computing, vol. 4: 65–85 (1994).

    Article  Google Scholar 

  25. Keith, J.M., Adams, P., Bryant, D. Kroese, D.P., Mitchelson, K.R., Cochran, D.A.E., and Lala, G.H. A simulated annealing algorithm for finding consensus sequences. Bioinformaics, vol. 18, no. 11, p. 1494–1499 (2002).

    Article  Google Scholar 

  26. Wang, L., Jiang, T. and Gusfield, D. A more efficient approximation scheme for tree align-ment. SIAM Journal of Computational Biology. 30: 283–299 (2000).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shyu, C., Foster, J.A. (2003). Evolving Consensus Sequence for Multiple Sequence Alignment with a Genetic Algorithm. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45110-2_124

Download citation

  • DOI: https://doi.org/10.1007/3-540-45110-2_124

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40603-7

  • Online ISBN: 978-3-540-45110-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics