Skip to main content

The Evolution of Modular Artificial Neural Networks for Legged Robot Control

  • Conference paper
  • First Online:
Book cover Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003 (ICANN 2003, ICONIP 2003)

Abstract

This paper outlines a system that allows a neural network, which is used to control a robot, to evolve in a structured but open-ended way. The final intention of the research is that, as the network develops, intelligence will eventually emerge. This is accomplished by placing the robot in a developing environment and allowing both this environment and the robot’s body form, sensors and actuators to become more complex and sophisticated as time passes. As this development takes place, neural network modules are added to the control system. The result is that the robot’s complexity and that of the neural network grows with its environment. Results are presented showing the system in operation on a simulated legged robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schaffer, J. D. et al: Combinations of Genetic Algorithms and Neural Networks: A Survey of the State of the Art. Proceedings of COGANN-92, IEEE Comp Soc Press (1992) 1–37

    Google Scholar 

  2. Vonk, E., Jain, L. C., Johnson, R. P.: Automatic Generation of Neural Network Architecture using Evolutionary Computation. World Scientific (1997)

    Google Scholar 

  3. de Garis, H.: CAM BRAIN: The evolutionary engineering of a billion neuron artificial brain by 2001 which grows / evolves at electronic speeds inside a cellular automata machine. Neuroinformatics and Neurocomputers (1995) 62–69

    Google Scholar 

  4. MacLeod, C., Maxwell, G.: Evolutionary Electronics. Practical Electronics, August (1999)

    Google Scholar 

  5. MacLeod, C., McMinn, D. et al: Evolution by Devolved Action: Towards the Evolution of Systems. In: Appendix B of McMinn, D.: Using Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous Systems, PhD Thesis, The Robert Gordon University, Aberdeen, UK (2002)

    Google Scholar 

  6. Alberts, B., Bray, D. et al.: The Molecular Biology of the Cell. 3rd ed. Garland Publishing (1994)

    Google Scholar 

  7. Fritzsch, B.: Evolution of the Ancestral Vertebrate Brain. In: Arbib, M. A.: The Handbook of Brain Theory and Neural Networks, The MIT press, (1998) 373–376

    Google Scholar 

  8. MacLeod, C., Maxwell G. M.: Incremental Evolution in ANNs: Neural Nets which Grow. Artificial Intelligence Review. Kluwer, 16 (2001) 201–224

    Article  MATH  Google Scholar 

  9. Gallinari, P.: Training of Modular Neural Net Syetems. In: Arbib, M. A. (ed): The Handbook of Brain Theory and Neural Networks, The MIT Press, (1998) 582–585

    Google Scholar 

  10. McMinn, D., Maxwell, G., MacLeod, C.: An Evolutionary Artificial Nervous System for Animat Locomotion. EANN 2000: Proceedings of the International Conference on Engineering Applications of Neural Networks, Kingston Upon Thames, UK (2000) 170–176

    Google Scholar 

  11. McMinn, D.: Using Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous Systems. PhD Thesis, The Robert Gordon University, Aberdeen, UK (2002)

    Google Scholar 

  12. Guo-Jian, C.: Incremental Learning of Self-organising Variable Topology Neural Networks. Shaker Verlag, Aachen (2001)

    Google Scholar 

  13. McMinn, D., Maxwell, G., MacLeod, C.: Evolutionary Artificial Neural Networks for Quadruped Locomotion. Proceedings of the International Conference on Neural Networks ICANN 2002, Madrid, (2002) 789–794

    Google Scholar 

  14. Shigematsu, Y., Ichikawa, M., Matsumoto, G.: Reconstitution studies on brain computing with the neural network engineering. In: Ono, T., McNaughton, B., Molotchnikoff, S. Rolls, E., Nishijo, H. (Eds.): Perception, memory and emotion: frontiers in neuroscience. Elsevier, (1996) 581–599

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muthuraman, S., Maxwell, G., MacLeod, C. (2003). The Evolution of Modular Artificial Neural Networks for Legged Robot Control. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds) Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003. ICANN ICONIP 2003 2003. Lecture Notes in Computer Science, vol 2714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44989-2_58

Download citation

  • DOI: https://doi.org/10.1007/3-540-44989-2_58

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40408-8

  • Online ISBN: 978-3-540-44989-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics