Skip to main content

A Markov Process Using Curvature for Filtering Curve Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2134))

Abstract

A Markov process model for contour curvature is introduced via a stochastic differential equation. We analyze the distribution of such curves, and show that its mode is the Euler spiral, a curve minimizing changes in curvature. To probabilistically enhance noisy and low contrast curve images (e.g., edge and line operator responses), we combine this curvature process with the curve indicator random field, which is a prior for ideal curve images. In particular, we provide an expression for a nonlinear, minimum mean square error filter that requires the solution of two elliptic partial differential equations. Initial computations are reported, highlighting how the filter is curvature-selective, even when curvature is absent in the input.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. August. The Curve Indicator Random Field. PhD thesis, Yale University, 2001.

    Google Scholar 

  2. J. August and S. W. Zucker. The curve indicator random field: curve organization via edge correlation. In K. Boyer and S. Sarkar, editors, Perceptual Organization for Artificial Vision Systems, pages 265–288. Kluwer Academic, Boston, 2000.

    Google Scholar 

  3. A. Dobbins, S. W. Zucker, and M. S. Cynader. Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature, 329(6138):438–441, 1987.

    Article  Google Scholar 

  4. E. B. Dynkin. Markov processes as a tool in field theory. Journal of Functional Analysis, 50:167–187, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. B. Dynkin. Gaussian and non-gaussian fields associated with markov processes. Journal of Functional Analysis, 55:344–376, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Geman and B. Jedynak. An active testing model for tracking roads in satellite images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(1):1–14, 1996.

    Article  Google Scholar 

  7. S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741, 1984.

    MATH  Google Scholar 

  8. G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer Academic, Dordrecht, 1995.

    Google Scholar 

  9. L. Herault and R. Horaud. Figure-ground discrimination: A combinatorial optimization approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):899–914, 1993.

    Article  Google Scholar 

  10. B. K. P. Horn. The Curve of Least Energy. ACM Transactions on Mathematical Software, 9:441–460, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. A. Iverson. Toward Discrete Geometric Models for Early Vision. PhD thesis, McGill University, Montreal, 1994.

    Google Scholar 

  12. L. A. Iverson and S. W. Zucker. Logical/linear operators for image curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(10):982–996, 1995.

    Article  Google Scholar 

  13. S. N. Kalitzin, B. M. ter Haar Romeny, and M. A. Viergever. Invertible orientation bundles on 2d scalar images. In Proc. Scale-Space’ 97, LICS, pages 77–88. Springer, 1997.

    Google Scholar 

  14. B. B. Kimia, I. Frankel, and A.-M. Popescu. Euler spiral for shape completion. In K. Boyer and S. Sarkar, editors, Perceptual Organization for Artificial Vision Systems, pages 289–309. Kluwer Academic, Boston, 2000.

    Google Scholar 

  15. J. J. Koenderink and W. Richards. Two-dimensional curvature operators. J. Opt. Soc. Am. A, 5(7):1136–1141, 1988.

    Article  MathSciNet  Google Scholar 

  16. K. Koffka. Principles of Gestalt Psychology. Harcourt, Brace & World, New York, 1963.

    Google Scholar 

  17. J. L. Marroquin. A markovian random field of piecewise straight lines. Biological Cybernetics, 61:457–465, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Mumford. Algebraic Geometry and Its Applications, chapter Elastica and Computer Vision, pages 491–506. Springer-Verlag, 1994.

    Google Scholar 

  19. P. Parent and S. W. Zucker. Trace inference, curvature consistency, and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8):823–839, August 1989.

    Google Scholar 

  20. S. Ullman. Filling-in gaps: The shape of subjective contours and a model for their generation. Biological Cybernetics, 25:1–6, 1976.

    MathSciNet  Google Scholar 

  21. S. Urago, J. Zerubia, and M. Berthod. A markovian model for contour grouping. Pattern Recognition, 28(5):683–693, 1995.

    Article  Google Scholar 

  22. L. Williams and D. Jacobs. Stochastic completion fields: A neural model of illusory contour shape and salience. Neural Computation, 9(4):837–858, 1997.

    Article  Google Scholar 

  23. L. Williams, T. Wang, and K. Thornber. Computing stochastic completion fields in linear-time using a resolution pyramid. In Proc. of 7th Intl. Conf. on Computer Analysis of Images and Patterns, Kiel, Germany, 1997.

    Google Scholar 

  24. A. L. Yuille and J. M. Coughlan. Fundamental bounds of bayesian inference: Order parameters and phase transitions for road tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(2):160–173, 2000.

    Article  Google Scholar 

  25. S. W. Zucker, A. Dobbins, and L. Iverson. Two stages of curve detection suggest two styles of visual computation. Neural Computation, 1:68–89, 1989.

    Article  Google Scholar 

  26. S. W. Zucker, R. Hummel, and A. Rosenfeld. An application of relaxation labelling to line and curve enhancement. IEEE Trans. Computers, C-26:393–403, 922–929, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

August, J., Zucker, S.W. (2001). A Markov Process Using Curvature for Filtering Curve Images. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-44745-8_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42523-6

  • Online ISBN: 978-3-540-44745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics