Skip to main content

Multiagent Bidding Mechanisms for Robot Qualitative Navigation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1986))

Abstract

This paper explores the use of bidding mechanisms to coordinate the actions requested by a group of agents in charge of achieving the task of guiding a robot towards a specified target in an unknown environment. This approach is based on a qualitative (fuzzy) approach to landmark-based navigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.C. Arkin. Motor schema-based mobile robot navigation. Int. J. Robotics research, 8(4):92–112, 1989.

    Article  Google Scholar 

  2. G. Bojadziev and M. Bojadziev. Fuzzy sets, fuzzy logic, applications, volume 5 of Advances in Fuzzy Systems. World Scientific, 1995.

    Google Scholar 

  3. R. Chatila. Path planning and environment learning in a mobile robot system. In Proceedings of the 1982 European Conference on Artificial Intelligence (ECAI-82), 1982.

    Google Scholar 

  4. A. Elfes. Sonar-based real-world mapping and navigation. IEEE J. Robotics and Automation, 3(3):249–265, 1987.

    Article  Google Scholar 

  5. M. Teresa Escrig and F. Toledo. Autonomous robot navigation using human spatial concepts. Int. Journal of Intelligent Systems, 15:165–196, 2000.

    Article  MATH  Google Scholar 

  6. R. Liscano et al. Using a blackboard to integrate multiple activities and achieve strategic reasoning for mobile-robot navigation. IEEE Expert, 10(2):24–36, 1995.

    Article  Google Scholar 

  7. C. Isik and A.M. Meystel. Pilot level of a hierarchical controller for an unmanned mobile robot. IEEE J. Robotics and Automation, 4(3):242–255, 1988.

    Google Scholar 

  8. D. M. Kortenkamp. Cognitive maps for mobile robots: A representation for mapping and navigation. PhD thesis, University of Michigan, Computer Science and Engineering Department, Michigan, 1993.

    Google Scholar 

  9. B.J. Kuipers and Y.-T. Byun. A robust qualitative method for spatial learning in unknown environments. In Proceedings AAAI-88, Menlo Park, CA, 1988. AAAI Press/MIT Press.

    Google Scholar 

  10. T.S. Levitt and D.T. Lawton. Qualitative navigation for mobile robots. Artificial Intelligence Journal, 44:305–360, 1990.

    Article  Google Scholar 

  11. E. Martinez and C. Torras. Qualitative vision for the guidance of legged robots in unstructured environments. Pattern Recognition, In press, 2000.

    Google Scholar 

  12. M.J. Mataric. Navigating with a rat brain: a neurobiologically-inspired model for robot spatial representation. In J.-A. Meyer and S.W. Wilson, editors, From Animals to Animats, Cambridge, MA, 1991. MIT Press.

    Google Scholar 

  13. H.P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine, 9(2):61–74, 1988.

    Google Scholar 

  14. N.J. Nilsson. A mobile automaton: An application of AI techniques. In Proceedings of the 1969 International Joint Conference on Artificial Intelligence, 1969.

    Google Scholar 

  15. T.J. Prescott. Spatial representation for navigation in animats. Adaptive Behavior, 4(2):85–125, 1996.

    Google Scholar 

  16. Julio Rosenblatt. Damn: A distributed architecture for mobile navigation. In Proceedings of the 1995 AAAI SpringSymposium on Lessons Learned from Implemented Software Architectures for Physical Agents. AAAI Press, March 1995.

    Google Scholar 

  17. A. Stentz. The codger system for mobile robot navigation. In C.E. Thorpe, editor, Vision and Navigation, the Carnegie Mellon Navlab, pages 187–201, Boston, 1990. Kluwer Academic Pub.

    Google Scholar 

  18. R. Sun and C. Sessions. Bidding in reinforcement learning: A paradigm for multi-agent systems. In J.P. Müller O. Etzioni and J.M. Bradshaw, editors, Proceedings 3d Annual Conference on Autonomous Agents, pages 344–345, Seattle, 1999.

    Google Scholar 

  19. S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence Journal, 99(2):21–72, 1998.

    Article  MATH  Google Scholar 

  20. D. Zipser. Biologically plausible models of placerecognition and place location. In J.L. McClelland and D.E. Rumelhart, editors, Parallel Distributed Processing: Explorations in the Micro-Structure of Cognition, Vol. 2, pages 432–470, Cambridge, MA, 1986. Bradford Books.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sierra, C., de López Màntaras, R., Busquets, D. (2001). Multiagent Bidding Mechanisms for Robot Qualitative Navigation. In: Castelfranchi, C., Lespérance, Y. (eds) Intelligent Agents VII Agent Theories Architectures and Languages. ATAL 2000. Lecture Notes in Computer Science(), vol 1986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44631-1_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-44631-1_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42422-2

  • Online ISBN: 978-3-540-44631-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics