Skip to main content

Three-Phase Oxygen Absorption and its Effect on Fermentation

  • Chapter
  • First Online:
Book cover History and Trends in Bioprocessing and Biotransformation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 75))

Abstract

The absorption rate of oxygen in the presence of a second, dispersed, organic phase can be significantly increased due to the higher solubility and diffusivity of oxygen in the organic phase. The oxygen supply of micro-organisms, which is very often a limiting factor during fermentation, can be improved, and the critical level of oxygen in the fermentation broth can be avoided by using dispersed organic phase. This paper reviews the models of the enhanced absorption rates and their integration into mass balance equations of fermentation. Several calculations were carried out to illustrate the effect of the dispersed organic phase and kinetic parameters on the absorption rates and on fermentation with double-substrate-limitation kinetics applying batch and continuous operation modes. Using software taking from the literature, the effect of the organic phase on the baker’s yeast production is also presented in fed-batch mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Junker B, Hatton TA, Wang DIC (1990) Biotechnology Bioengineering 35:578

    Article  CAS  Google Scholar 

  2. Ghommidh C, Cutayer JM, Navarro JM (1986) Biotechnol Lett 8:13

    Article  CAS  Google Scholar 

  3. Yamada S, Wada M, Chibata J (1978) J Environ Ferment Technol 56:29

    CAS  Google Scholar 

  4. Jansen NB, Flickinger M, Tsao GT ( 1984) Biotechnology Bioengineering 26:362

    Article  CAS  Google Scholar 

  5. Sablayrolles JM, Goma G (1984) Biotechnology Bioengineering 26:148

    Article  CAS  Google Scholar 

  6. Fuchs R, Wang DIC (1974) Biotechnology Bioengineering 16:1529

    Article  CAS  Google Scholar 

  7. Liu YC, Chang WM, Lee CY (1999) Bioprocess Engineering 21:227

    CAS  Google Scholar 

  8. Sriram G, Rao YM, Suresh AK, Sureshkumar GK ( 1998) Biotechnol Bioeng 59:715

    Article  Google Scholar 

  9. Schlegel HG, Ibraim HG ( 1980) Biotechnology Bioengineering 22:1877

    Article  Google Scholar 

  10. Holst O, Enfors SO, Mattiasson (1982) Eur J Appl Microbiol Biotechnol 14:64

    Article  CAS  Google Scholar 

  11. Adlercreutz P, Holst O, Mattiasson B ( 1982) Enzyme Microb Technol 4:395

    Article  CAS  Google Scholar 

  12. Mimura A, Takeda I, Wakasa R (1973) Biotechnol Bioeng Symp 4:467

    Google Scholar 

  13. Ho CS, Ju LK, Baddour RF (1990) Biotechnol Bioeng 36:1110

    Article  CAS  Google Scholar 

  14. Ju LK, Lee JF. Armiger WB ( 1991 ) Biotechnol Prog 7:323

    Article  CAS  Google Scholar 

  15. Adlercreutz P, Mattiasson B (1985) Appl Microbiol Biotech 16:165

    Google Scholar 

  16. Leonhardt A, Szwajcer E, Mosbach K (1985) Appl Microbiol Biotech 21:162

    Article  CAS  Google Scholar 

  17. Rols JL, Goma G (1989) Biotech Adv 7:1

    Article  CAS  Google Scholar 

  18. Rols JL, Conderet JS, Fonade C, Goma G ( 1990) Biotechnology Bioengineering 35:427

    Article  CAS  Google Scholar 

  19. Ju LK, Lee JF, Armiger WB (1991) Biotechnol Prog 7:323

    Article  CAS  Google Scholar 

  20. Rols JL, Goma G (1991) Biotechnol Lett 13:7

    Article  CAS  Google Scholar 

  21. Leung R, Poncelet D, Neufeld RJ (1997) J Chem Tech Biotechnol 68:37

    Article  CAS  Google Scholar 

  22. Poncelet D, Leung R, Centomo L, Neufeld RJ (1993) J Chem Tech Biotechnol 57:253

    CAS  Google Scholar 

  23. Jia S, Li P, Park YS, Okabe M, (1993) J Ferment Bioeng 19:661

    Google Scholar 

  24. Liu HS, Chiung WC, Wang YC ( 1994) Biotechn Techn 8X: 17

    Google Scholar 

  25. McMillan JD, Wang DIC ( 1990) Ann. N.Y. Acad. Sci. p 289

    Google Scholar 

  26. Yoshida F, Yamane T, Miyamoto Y (1970) Ind Eng Chem Proc Des Dev 9:570

    Article  CAS  Google Scholar 

  27. Alper E, Deckwer WD (1981) Chem Engng Sci 36:1097

    Article  CAS  Google Scholar 

  28. Nagy E, Blickle T, Ujhidy A ( 1986) Chem Engng Sci 41:2193

    Article  CAS  Google Scholar 

  29. anakirman B, Sharma MM (1985) Chem Engng Sci 40:235

    Article  Google Scholar 

  30. Holstvoogd RD, van Swaaij WPM, van Dierendonck LL (1988) Chem Engng Sci 43:2181

    Article  CAS  Google Scholar 

  31. Wimmers OJ, Paulussen R, Vermeulen DP, Fortuin JMH (1984) Chem Engng Sci 39:1415

    Article  CAS  Google Scholar 

  32. Demmink JF, Mehra A, Beenackers AACM (1998) Chem Engng Sci 53:2885

    Article  CAS  Google Scholar 

  33. Holsvoogd RD, Ptasinski KJ, van Swaaij WPM (1986)41:867

    Google Scholar 

  34. Zarzycky R, Chacuk A (1993) Absorption: Fundamentals and Application, Pergamon Press, Oxford

    Google Scholar 

  35. Mehra A, Pandit A, Sharma MM ( 1988) Chem Engng Sci 43:913

    Article  CAS  Google Scholar 

  36. Vinke H, Hamersma PJ, Fortuin JMH (1992) Chem Engng Sci 48:2197

    Article  Google Scholar 

  37. Bruining WJ, Joosten GEH, Beenackers AACM, Hofman H (1986) Chem Engng Sci 41:1873

    Article  CAS  Google Scholar 

  38. Mehra A (1988) Chem Engng Sci 43:899

    Article  CAS  Google Scholar 

  39. Littel RJ, Versteeg GF, van Swaaij WPM (1994) AIChE J 40-1629

    Article  CAS  Google Scholar 

  40. Nagy E, Moser A (1995) AIChE J 41:23

    Article  CAS  Google Scholar 

  41. Karve S, Juvekar VA (1990) 45:587

    Google Scholar 

  42. Brilman DWF, van Swaaij WPM, Versteeg GF (1998) Chemical Engineering and Processing 37:471

    Article  CAS  Google Scholar 

  43. Brilman DWF (1998) Mass transfer and chemical reaction in gas-liquid-liquid Systems, Thesis Twente

    Google Scholar 

  44. Lin C, Zhou M, Xu CJ (1999) Chem Engng Sci 54:389

    Article  CAS  Google Scholar 

  45. Junker BH, Wang DIC, Hatton TA (1990) Biotechnology Bioengineering 35:586

    Article  CAS  Google Scholar 

  46. Nagy E (1995) Chem Engng Sci 50:827

    Article  CAS  Google Scholar 

  47. Froment GF, Bischoff KB (1979) Chemical Reactor Analysis and Design, Wiley, New York

    Google Scholar 

  48. Nagy E (1998) Hung J Ind Chemistry 26:229

    CAS  Google Scholar 

  49. van Ede CJ, van Houten R, Beenackers AACM (1995) Chem Engng Sci 50:2911

    Article  Google Scholar 

  50. Brilman DWF (1998) Mass transfer and chemical reaction in gas-liquid-liquid Systems, Thesis Twente, p 143

    Google Scholar 

  51. Mehra A, Sharma MM (1985) Chem Engng Sci 40:2382

    Article  CAS  Google Scholar 

  52. Lekhal A, Chaudhari RV, Wilhelm AM, Delmas H (1997) Chem Engng Sci 52:4069

    Article  CAS  Google Scholar 

  53. Chaudhary RV, Jayasree P, Gupte SP, Delmas H (1997) Chem Engng Sci 52:4197

    Article  Google Scholar 

  54. Brilman DWF, Goldschmidt MJV, Versteeg GF, van Swaaij WPM (2000) Chem Engng Sci 55:2793

    Article  CAS  Google Scholar 

  55. Lowe KC, King AT, Mulligan BJ (1989) Biotechnol 7:1037

    Google Scholar 

  56. Chandler D, Davey MR, Lowe KC, Mulligan B ( 1987) Biotechnol Letters 9:195

    Article  CAS  Google Scholar 

  57. Chibata I, Yamada S, Wada M, Izuo N, Yamaguchi T (1974) US Patent 3 850 783

    Google Scholar 

  58. Adlercreutz P, Holst O, Mattiasson B ( 1984) Appl. Microbiol. Bitechnol 20:296

    Article  CAS  Google Scholar 

  59. Munaretto F ( 1997) Evaluation of microencapsulated silicone oils as oxygen carriers in the production of dihydroxyacetone by Gluconobacter oxydans, Thesis, McGill University, Montreal

    Google Scholar 

  60. Danckwerts PV (1970) Gas-Liquid Reactions, McGraw-Hill, New York

    Google Scholar 

  61. Moser A (1981) Bioprocess Technology. Springer, Berlin Heidelberg New York

    Google Scholar 

  62. Schügerl K (1985) Bioreaktionstechnik Band 1. Salle+Sauerlaender, Frankfurt am Main

    Google Scholar 

  63. Sinclair CG, Ryder DN, (1975) Biotechnol Bioeng 17:375

    Article  CAS  Google Scholar 

  64. Burden RL, Faires JD (1985) Numerical Analysis 3ed, Academic Press, Boston p. 226

    Google Scholar 

  65. Nagy E (1996) 5th Word Congress of Chemical Engineering, San Diego Vol. III. p 711

    Google Scholar 

  66. Nagy E (1997) 11th Forum for Applied Biotechnology, Gent Vol. II. p 1573

    Google Scholar 

  67. Enfors SO, Hedenberg J, Olsson K (1990) Bioproc Eng 5:191

    Article  CAS  Google Scholar 

  68. Kristiansen B ( 1994) Integrated design of a fermentation plant, the production of baker’s yeast, VCH, Basel

    Google Scholar 

  69. Kristiansen B ( 1994) Integrated design of a fermentation plant, the production of baker’s yeast, VCH, Basel, p 44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

N. N. Dutta F. Hammar K. Haralampidis N. G. Karanth A. König S. H. Krishna G. Kunze E. Nagy B. Orlich A. E. Osbourn K. S. M. S. Raghavarao K. Riedel G. C. Sahoo R. Schomäcker N. D. Srinivas M. Trojanowska

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagy, E. (2002). Three-Phase Oxygen Absorption and its Effect on Fermentation. In: Dutta, N.N., et al. History and Trends in Bioprocessing and Biotransformation. Advances in Biochemical Engineering/Biotechnology, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44604-4_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44604-4_3

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42371-3

  • Online ISBN: 978-3-540-44604-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics