Skip to main content

Optimal Beam Penetrations in Two and Three Dimensions

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1969))

Included in the following conference series:

Abstract

The problem of computing an optimal beam among weighted regions (called the optimal beam problem) arises in several applied areas such as radiation therapy, stereotactic brain surgery, medical surgery, geological exploration, manufacturing, and environmental engineering. In this paper, we present computational geometry techniques that enable us to develop efficient algorithms for solving various optimal beam problems among weighted regions in two and three dimensions. In particular, we consider two types of problems: the covering problems (seeking an optimal beam to contain a specified target region), and the piercing problems (seeking an optimal beam of a fixed shape to piercethe target region). We investigate several versions of these problems, with a variety of beam shapes and target region shapes in 2-D and 3-D. Our algorithms are based on interesting combinations of computational geometry techniques and optimization methods, and transform the optimal beam problems to solving a collection of instances of certain special non-linear optimization problems. Our approach makes use of interesting geometric observations, such as utilizing some new features of Minkowski sums.

The research of the first and third authors was supported in part by NSF under Grants CCR-9623585 and CCR-9988468. The research of the second author was supported in part by NSF under Grants MIP-9701416 and CCR-9988468, and by HP Labs, Bristol, England, under an external research program grant. The majority of the research of the third author was done when the author was a graduate student at the CSE Dept., Univ. of Notre Dame, and supported in part by a fellowship from the Center for Applied Mathematics, and by a summer graduate research fellowship from the Graduate School, Univ. of Notre Dame, Notre Dame, Indiana, USA. D.T. Lee and S.-H. Teng (Eds.): ISAAC 2000, LNCS 1969, pp. 491-502, 2000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amato, N.M., Goodrich, M.T., Ramos, E.A.: Computing the arrangement of curve segments: Divide-and-conquer algorithms via sampling. Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms (2000) 705–706.

    Google Scholar 

  2. Asano, T., Guibas, L.J., Tokuyama, T.: Walking in an arrangement topologically. Int. J. of Computational Geometry and Applications 4 (1994) 123–151.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bahr, G.K., Kereiakes, J.G., Horowitz, H., Finney, R., Galvin, J., Goode, K.: The method of linear programming applied to radiation treatment planning. Radiology 91 (1968) 686–693.

    Google Scholar 

  4. Bortfeld, T., Bürkelbach, J., Boesecke, R., Schlegel, W.: Methods of image reconstruction from projections applied to conformation radiotherapy. Phys. Med. Biol. 38 (1993) 291–304.

    Article  Google Scholar 

  5. Bortfeld, T., Schlegel, W.: Optimization of beam orientations radiation therapy: Some theoretical considerations. Phys. Med. Biol. 35 (1990) 1423–1434.

    Article  Google Scholar 

  6. Boyer, A.L., Bortfeld, T.R., Kahler, L., Waldron, T.J.: MLC modulation of x-ray beams in discrete steps. Proc. 11th Conf. on the Use of Computers in Radiation Therapy (1994) 178–179.

    Google Scholar 

  7. Boyer, A.L., Desobry, G.E., Wells, N.H.: Potential and limitations of invariant kernel conformal therapy. Med. Phys. 18 (1991) 703–712.

    Article  Google Scholar 

  8. Brahme, A.: Optimization of stationary and moving beam radiation therapy techniques. Radiother. Oncol. 12 (1988) 129–140.

    Article  Google Scholar 

  9. Brahme, A.: Inverse radiation therapy planning: Principles and possibilities. Proc. 11th Conf. on the Use of Computers in Radiation Therapy(1994) 6–7.

    Google Scholar 

  10. Brahme, A.: Optimization of radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 28 (1994) 785–787.

    Google Scholar 

  11. Bucholz, R.D.: Introduction to the journal of image guided surgery. Journal of Image Guided Surgery1(1) (1995) 1–11.

    Article  Google Scholar 

  12. Burckhardt, C.W., Flury, P., Glauser, D.: Stereotactic brain surgery. IEEE Engineering in Medicine and biology 14(3) (1995) 314–317.

    Article  Google Scholar 

  13. Censor, Y., Altschuler, M.D., Powlis, W.D.: A computational solution of the inverse problem in radiation-therapy treatment planning. Applied Math. and Computation 25 (1988) 57–87.

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, D.Z., Daescu, O., Hu, X.S., Wu, X., Xu, J.: Determining an optimal penetration among weighted regions in two and three dimensions. Proc. 15th ACM Annual Symposium on Computational Geometry (1999) 322–331.

    Google Scholar 

  15. Edelsbrunner, H.: Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.

    Google Scholar 

  16. Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. Journal of Computer and System Sciences 38 (1989) 165–194.

    Article  MATH  MathSciNet  Google Scholar 

  17. Edelsbrunner, H., Guibas, L.J., Pach, J., Pollack, R., Seidel, R., Sharir, M.: Arrangements of curves in the plane: Topology, combinatorics, and algorithms. Theoretical Computer Science 92 (1992) 319–336.

    Article  MATH  MathSciNet  Google Scholar 

  18. Gustafsson, A., Lind, B.K., Brahme, A.: A generalized pencil beam algorithm for optimization of radiation therapy. Med. Phys. 21 (1994) 343–356.

    Article  Google Scholar 

  19. Holmes, T., Mackie, T.R.: A comparison of three inverse treatment planning algorithms. Phys. Med. Biol. 39 (1994) 91–106.

    Article  Google Scholar 

  20. Legras, J., Legras, B., Lambert, J.P., Aletti, P.: The use of a microcomputer for non-linear optimization of doses in external radiotherapy. Phys. Med. Biol. 31 (1986) 1353–1359.

    Article  Google Scholar 

  21. Lind, B.K.: Properties of an algorithm for solving the inverse problem in radiation therapy. Proc. 9th Int. Conf. on the Use of Computers in Radiation Therapy (1987) 235–239.

    Google Scholar 

  22. Lind, B.K., Brahme, A.: Optimization of radiation therapy dose distributions with scanned photon beams. Inv. Prob. 16(1990) 415–426.

    Article  Google Scholar 

  23. McDonald, S.C., Rubin, P.: Optimization of external beam radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2 (1977) 307–317.

    Google Scholar 

  24. Powlis, W.D., Altschuler, M.D., Censor, Y., Buhle, E.L.: Semi-automated radiotherapy treatment planning with a mathematical model to satisfy treatment goals. Int. J. Radiat. Oncol. Biol. Phys. 16(1989) 271–276.

    Google Scholar 

  25. Preparata, F. P., Shamos, M. I.: Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  26. Schweikard, A., Adler, J.R., Latombe, J.-C.: Motion planning in stereotaxic radiosurgery. IEEE Trans. on Robotics and Automation 9 (1993) 764–774.

    Article  Google Scholar 

  27. Schweikard, A., Tombropoulos, R., Kavraki, L., Adler, J.R., Latombe, J.-C.: Treatment planning for a radiosurgical system with general kinematics. Proc. IEEE Int’l Conference on Robotics and Automation (1994) 1720–1727.

    Google Scholar 

  28. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, 1995.

    Google Scholar 

  29. Tombropoulos, R.Z., Adler, J.R., Latombe, J.-C.: CARABEAMER: A treatment planner for a robotic radiosurgical system with general kinematics. Medical Image Analysis 3 (1999) 1–28.

    Article  Google Scholar 

  30. Webb, S.: Optimization of conformal radiotherapy dose distributions by simulated annealing. Phys. Med. Biol. 34 (1989) 1349–1369.

    Article  Google Scholar 

  31. Webb, S.: Optimizing the planning of intensity-modulated radiotherapy. Phys. Med. Biol. 39 (1994) 2229–2246.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, D.Z., Hu, X., Xu, J. (2000). Optimal Beam Penetrations in Two and Three Dimensions. In: Goos, G., Hartmanis, J., van Leeuwen, J., Lee, D.T., Teng, SH. (eds) Algorithms and Computation. ISAAC 2000. Lecture Notes in Computer Science, vol 1969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40996-3_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-40996-3_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41255-7

  • Online ISBN: 978-3-540-40996-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics