Skip to main content

The Divide-and-Conquer Manifesto

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1968))

Included in the following conference series:

Abstract

Existing machine learning theory and algorithms have focused on learning an unknown function from training examples, where the unknown function maps from a feature vector to one of a small number of classes. Emerging applications in science and industry require learning much more complex functions that map from complex input spaces (e.g., 2-dimensional maps, time series, and strings) to complex output spaces (e.g., other 2-dimensional maps, time series, and strings). Despite the lack of theory covering such cases, many practical systems have been built that work well in particular applications. These systems all employ some form of divide-and-conquer, where the inputs and outputs are divided into smaller pieces (e.g., “windows”), classified, and then the results are merged to produce an overall solution. This paper defines the problem of divide-and-conquer learning and identifies the key research questions that need to be studied in order to develop practical, general-purpose learning algorithms for divide-and-conquer problems and an associated theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Bakiri, G. (1991). Converting English text to speech: A machine learning approach. Tech. rep. 91-30-2, Department of Computer Science, Oregon State University, Corvallis, OR.

    Google Scholar 

  • Bakiri, G., & Dietterich, T. G. (2000). Achieving high-accuracy text-to-speech with machine learning. In Damper, R. I. (Ed.), Data Mining Techniques in Speech Synthesis. Chapman and Hall, New York, NY.

    Google Scholar 

  • Baldi, P., & Brunak, S. (1998). Bioinformatics, the Machine Learning Approach. MIT Press.

    Google Scholar 

  • Bengio, Y. (1999). Markovian models for sequential data. Neural Computing Surveys, 2, 129–162.

    Google Scholar 

  • Bengio, Y., De Mori, R., Flammia, G., & Kompe, R. (1992). Global optimization of a neural-network hidden Markov model hybrid. IEEE Transactions on Neural Networks, 3(2), 252–258.

    Article  Google Scholar 

  • Bengio, Y., Le Cun, Y., & Henderson, D. (1994). Globally trained handwritten word recognizer using spatial representation, convolutional neural networks, and hidden Markov models. In Cowan, J. D., Tesauro, G., & Alspector, J. (Eds.), Advances in Neural Information Processing Systems, Vol. 6, pp. 937–944. Morgan Kaufmann, San Francisco.

    Google Scholar 

  • Bourlard, H., & Morgan, N. (1993). Connectionist Speech Recognition: A Hybrid Approach. Kluwer.

    Google Scholar 

  • Bunjongsat, W. (2000). Grasshopper infestation prediction: An application of data mining to ecological modeling. Tech. rep., Department of Computer Science, Oregon State University. MS Project Report.

    Google Scholar 

  • Burl, M. C., Asker, L., Smyth, P., Fayyad, U., Perona, P., Crumpler, L., & Aubele, J. (1998). Learning to recognize volcanoes on Venus. Machine Learning, 30 (2/3), 165–194.

    Article  Google Scholar 

  • Fawcett, T., & Provost, F. (1997). Adaptive fraud detection. Knowledge Discovery and Data Mining, 1, 291–316.

    Article  Google Scholar 

  • Franzini, M., Lee, K., & Waibel, A. (1990). Connectionist Viterbi training: a new hybrid method for continuous speech recognition. In International Conference on Acoustics, Speech, and Signal Processing, pp. 425–428.

    Google Scholar 

  • Haussler, D., Krogh, A., Brown, M., Mian, S., & Sjölander, K. (1994). Hidden Markov models in computational biology: Applications to protein modeling. Journal of Molecular Biology, 235, 1501–1531.

    Article  Google Scholar 

  • Jelinek, F. (1999). Statistical methods for speech recognition. MIT Press.

    Google Scholar 

  • Ling, C. X., & Wang, H. (1997). Alignment algorithms for learning to read aloud. In Proceedings the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97), pp. 874–879.

    Google Scholar 

  • Lippmann, R. P., & Gold, B. (1987). Neural classifiers useful for speech recognition. In IEEE Proceedings of the First International Conference on Neural Networks, Vol. IV, pp. 417–422.

    Google Scholar 

  • Lucassen, J. M., & Mercer, R. L. (1984). An information theoretic approach to the automatic determination of phonemic base forms. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, ICASSP-84, pp. 42.5.1–42.5.4.

    Google Scholar 

  • Màrquez, L. (1999). Part-of-speech Tagging: A Machine Learning Approach Based on Decision Trees. Ph.D. thesis, Department de Llenguatges i Sistemes Informàtics, Universitat Politecnica de Catalunya.

    Google Scholar 

  • Màrquez, L., Padró, L., & Rodríguez, H. (2000). A machine learning approach to POS tagging. Machine Learning, 39 (1), 59–91.

    Article  MATH  Google Scholar 

  • Qian, N., & Sejnowski, T. J. (1988). Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology, 202, 865–884.

    Article  Google Scholar 

  • Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce English text. Complex Systems, 1, 145–168.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dietterich, T.G. (2001). The Divide-and-Conquer Manifesto. In: Arimura, H., Jain, S., Sharma, A. (eds) Algorithmic Learning Theory. ALT 2000. Lecture Notes in Computer Science(), vol 1968. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40992-0_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-40992-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41237-3

  • Online ISBN: 978-3-540-40992-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics