Skip to main content

Efficient Shaping of User-Specified QoS Using Aggregate-Flow Control

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1922))

Abstract

Architecting networks capable of providing scalable, efficient, and fair services to users with diverse QoS requirements is a pressing problem. The two principal issues are: design of “good” per-hop behavior and edge control. In previous work [2][3], we studied aggregate-flow QoS control from a noncooperative resource provisioning context. In [20], the framework was generalized by, one, solving an optimal aggregate-flow per-hop behavior problem, and two, showing how it can be used coupled with end-to-end label control to facilitate scalable and fair QoS when driven by selfish users and service providers. In this paper, we focus on optimal aggregate-flow per-hop control and complement analysis by experimental performance evaluation. We show that user-specified, diverse QoS is efficiently facilitated over the optimal per-hop behavior network substrate using adaptive label control end-to-end.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for differentiated service. RFC 2475, 1998. 260

    Google Scholar 

  2. S. Chen and K. Park. A distributed protocol for multi-class QoS provision in noncooperative many-switch systems. In Proc. IEEE International Conference on Network Protocols, pages 98–107, 1998. 259, 260

    Google Scholar 

  3. S. Chen and K. Park. An architecture for noncooperative QoS provision in manyswitch systems. In Proc. IEEE INFOCOM’ 99, pages 864–872, 1999. 259, 260

    Google Scholar 

  4. S. Chen, K. Park, and M. Sitharam. On the ordering properties of GPS routers for multi-class QoS provision. In Proc. SPIE International Conference on Performance and Control of Network Systems, pages 252–265, 1998. 263

    Google Scholar 

  5. Shaogang Chen. Stratified Best-effort QoS Provisioning in Noncooperative Networks. PhD thesis, Purdue University, 2000. 263, 267

    Google Scholar 

  6. D. Clark and W. Fang. Explicit allocation of best-effort packet delivery service. IEEE/ACM Trans. Networking, 6(4):362–373, 1998. 260

    Article  Google Scholar 

  7. R. L. Cruz. Quality of service guarantees in virtual circuit switched networks. IEEE J. Select. Areas Commun., 13(6):1048–1056, 1995. 259

    Article  Google Scholar 

  8. G. de Veciana, G. Kesidis, and J. Walrand. Resource management in wide-area ATM networks using effective bandwidths. IEEE J. Select. Areas Commun., 13(6):1081–1090, 1995. 259

    Google Scholar 

  9. C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differentiated services: Delay differentiation and packet scheduling. In Proc. ACM SIGCOMM’ 99, 1999. 260

    Google Scholar 

  10. W. Feng, D. Kandlur, D. Saha, and K. Shin. Adaptive packet marking for providing differentiated services in the Internet. In Proc. IEEE International Conference on Network Protocols, pages 108–117, 1998. 260

    Google Scholar 

  11. M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman and Company, 1979. 266

    Google Scholar 

  12. J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB Group. RFC 2597, 1999. 260

    Google Scholar 

  13. V. Jacobson, K. Nichols, and K. Poduri. An Expedited Forwarding PHB. RFC 2598, 1999. 260

    Google Scholar 

  14. J. MacKie-Mason and H. Varian. Economic FAQs about the Internet. In L. McKnight and J. Bailey, editors, Internet Economics, pages 27–63. MIT Press, 1996. 260

    Google Scholar 

  15. M. May, J. Bolot, A. Jean-Marie, and C. Diot. Simple performance models of differentiated services schemes for the Internet. In Proc. IEEE INFOCOM’ 99, pages 1385–1394, 1999. 260

    Google Scholar 

  16. Andrew Odlyzko. Paris Metro Pricing: The minimalist differentiated services solution. In Proc. IEEE/IFIP International Workshop on Quality of Service, 1999. 260

    Google Scholar 

  17. A. Parekh and R. Gallager. A generalized processor sharing approach to flow control in integrated services networks: the multiple node case. IEEE/ACM Trans. Networking, 2(2):137–150, 1994. 259

    Article  Google Scholar 

  18. K. Park, M. Sitharam, and S. Chen. Quality of service provision in noncooperative networks: heterogeneous preferences, multi-dimensional QoS vectors, and burstiness. In Proc. 1st International Conference on Information and Computation Economies, pages 111–127, 1998. 260

    Google Scholar 

  19. Kihong Park. Warp control: a dynamically stable congestion protocol and its analysis. In Proc. ACM SIGCOMM’ 93, pages 137–147, 1993. 263

    Google Scholar 

  20. H. Ren and K. Park. Toward a theory of differentiated services. In Proc. IEEE/IFIP International Workshop on Quality of Service, pages 211–220, 2000. 259, 26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, H., Park, K. (2000). Efficient Shaping of User-Specified QoS Using Aggregate-Flow Control. In: Crowcroft, J., Roberts, J., Smirnov, M.I. (eds) Quality of Future Internet Services. QofIS 2000. Lecture Notes in Computer Science, vol 1922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39939-9_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-39939-9_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41076-8

  • Online ISBN: 978-3-540-39939-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics