Skip to main content

Coverage, Exploration, and Deployment by a Mobile Robot and Communication Network

  • Conference paper
  • First Online:
Information Processing in Sensor Networks (IPSN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2634))

Included in the following conference series:

Abstract

We consider the problem of coverage and exploration of an unknown dynamic environment using a mobile robot(s). The environment is assumed to be large enough such that constant motion by the robot(s) is needed to cover the environment. We present an efficient minimalist algorithm which assumes that global information is not available (neither a map, nor GPS). Our algorithm deploys a network of radio beacons which assists the robot(s) in coverage. This network is also used for navigation. The deployed network can also be used for applications other than coverage. Simulation experiments are presented which show the collaboration between the deployed network and mobile robot(s) for the tasks of coverage/exploration, network deployment and maintenance (repair), and mobile robot(s) recovery (homing behavior). We present a theoretical basis for our algorithm on graphs and show the results of the simulated scenario experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gage, D.W.: Command control for many-robot systems. In: the Nineteenth Annual AUVS Technical Symposium, Huntsville, Alabama, USA (1992) 22–24

    Google Scholar 

  2. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  3. Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In: Proc. of 6th International Symposium on Distributed Autonomous Robotic Systems, Fukuoka, Japan (2002) 299–308

    Google Scholar 

  4. Batalin, M.A., Sukhatme, G.S.: Spreading out: A local approach to multi-robot coverage. In: Proc. of 6th International Symposium on Distributed Autonomous Robotic Systems, Fukuoka, Japan (2002) 373–382

    Google Scholar 

  5. Batalin, M.A., Sukhatme, G.S.: Sensor coverage using mobile robots and stationary nodes. In: SPIE2002. Volume 4868. (2002) 269–276

    Google Scholar 

  6. Yamauchi, B.: Frontier-based approach for autonomous exploration. In: In Proceedings of the IEEE International Symposium on Computational Intelligence, Robotics and Automation. (1997) 146–151

    Google Scholar 

  7. Yamauchi, B., Schultz, A., Adams, W.: Mobile robot exploration and map-building with continuous localization. In: In Proceedings of the 1998 IEEE/RSJ International Conference on Robotics and Automation. Volume 4. (1998) 3175–3720

    Google Scholar 

  8. Zelinsky, A.: A mobile robot exploration algorithm. In: IEEE Transactions on Robotics and Automation. Volume 8. (1992) 707–717

    Article  Google Scholar 

  9. Burgard, W., Fox, D., Moors, M., Simmons, R., Thrun, S.: Collaborative multirobot exploration. In: Proc. of IEEE International Conferenceon Robotics and Automation (ICRA). Volume 1. (2000) 476–481

    Google Scholar 

  10. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Robotic exploration as graph construction. In: IEEE Transactions on Robotics and Automation, 7-6. (1991)

    Google Scholar 

  11. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. In: Annual ACM Symposium on Theory of Computing (STOC’ 98). (1998)

    Google Scholar 

  12. Koenig, S., Simmons, R.: Easy and hard testbeds for real-time search algorithms. In: Proccedings of National Conference on Artificial Intelligence. (1996) 279–285

    Google Scholar 

  13. Szymanski, B., Koenig, S.: The complexity of node counting on undirected graphs. Technical report, Computer Science Department, Rensselaer Technical Institute, Troy(New York) (1998)

    Google Scholar 

  14. Li, Q., DeRosa, M., Rus, D.: Distributed algorithms for guiding navigation across a sensor network. In: The 2nd International Workshop on Information Processing in Sensor Networks (IPSN’ 03), Palo Alto (2003)

    Google Scholar 

  15. Mataric, M.J.: Behavior-based control: Examples from navigation, learning, and group behavior. Journal of Experimental and Theoretical Artificial Intelligence, special issue on Software Architectures for Physical Agents 9 (1997) 323–336

    Google Scholar 

  16. Pirjanian, P.: Behavior coordination mechanisms — state-of-the-art. Technical Report IRIS-99-375, Institute for Robotics and Intelligent Systems, University of Southern California (1999)

    Google Scholar 

  17. Lovasz, L. In: Random Walks on Graphs: A Survey. Volume 2 of Combinatorics, Paul Erdos is Eighty, Keszthely, Hungary (1993) 1–46

    Google Scholar 

  18. White, D.J.: Markov Decision Process. John Wiley & Sons, West Sussex, England (1993)

    Google Scholar 

  19. Koenig, S., Simmons, R.G.: Complexity analysis of real-time reinforcement learning applied to finding shortest paths in deterministic domains. Technical Report CMU-CS-93-106, Carnegie Mellon University, School of Computer Science, Carnegie Mellon University, Pittsburg, PA 15213 (1992)

    Google Scholar 

  20. Pister, K.S.J., Kahn, J.M., Boser, B.E.: Smart dust: Wireless networks of millimeter-scale sensor nodes. Electronics Research Laboratory Research Summary (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batalin, M.A., Sukhatme, G.S. (2003). Coverage, Exploration, and Deployment by a Mobile Robot and Communication Network. In: Zhao, F., Guibas, L. (eds) Information Processing in Sensor Networks. IPSN 2003. Lecture Notes in Computer Science, vol 2634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36978-3_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-36978-3_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02111-7

  • Online ISBN: 978-3-540-36978-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics