Skip to main content

Improved Compact Visibility Representation of Planar Graph via Schnyder’s Realizer

  • Conference paper
  • First Online:
STACS 2003 (STACS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2607))

Included in the following conference series:

Abstract

Let G be an n-node planar graph. In a visibility representation of G, each node of G is represented by a horizontal segment such that the segments representing any two adjacent nodes of G are vertically visible to each other. In this paper, we give the best known compact visibility representation of G. Given a canonical ordering of the triangulated G, our algorithm draws the graph incrementally in a greedy manner. We show that one of three canonical orderings obtained from Schnyder’s realizer for the triangulated G yields a visibility representation of G no wider than ⌈ 22n-42/15 ⌋. Our easy-to-implement O(n)-time algorithm bypasses the complicated subroutines for four-connected components and four-block trees required by the best previously known algorithm of Kant. Our result provides a negative answer to Kant’s open question about whether ⌈ 3n-6/2 ⌋ is a worst-case lower bound on the required width. Moreover, if G has no degree-5 node, then our output for G is no wider than ⌈ 4n-7/3 ⌋. Also, if G is four-connected, then our output for G is no wider than n-1, matching the best known result of Kant and He. As a by-product, we obtain a much simpler proof for a corollary of Wagner’s Theorem on realizers, due to Bonichon, Saëc, and Mosbah.

Corresponding author. Address: 128 Academia Road, Section 2, Taipei 115, Taiwan. This author’s research is supported in part by NSC grant NSC-91-2213-E-001-028.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bonichon, C. Gavoille, and N. Hanusse. An information-theoretic upper bound of planar graphs using triangulation. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, Berlin, Germany, 2003. To appear.

    Google Scholar 

  2. N. Bonichon, B. L. Saëc, and M. Mosbah. Wagner’s theorem on realizers. In Proceedings of the 29th International Colloquium on Automata, Languages, and Programming, LNCS 2380, pages 1043–1053, Málaga, Spain, 2002.

    Google Scholar 

  3. H.-L. Chen, C.-C. Liao, H.-I. Lu, and H.-C. Yen. Some applications of orderly spanning tree in graph drawing. In Proceedings of the 10th International Symposium on Graph Drawing, LNCS 2528, pages 332–343, Irvine, California, 2002.

    Google Scholar 

  4. Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with applications to graph encoding and graph drawing. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 506–515, Washington, D. C., USA, 7–9 Jan. 2001.

    Google Scholar 

  5. M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs. International Journal of Computational Geometry & Applications, 7(3):211–223, 1997.

    Article  MathSciNet  Google Scholar 

  6. H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. On triangle contact graphs. Combinatorics, Probability and Computing, 3:233–246, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41–51, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Di Battista, R. Tamassia, and I. G. Tollis. Constrained visibility representations of graphs. Information Processing Letters, 41:1–7, 1992.

    Article  MATH  Google Scholar 

  9. S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer Science, 2:436–441, 1976.

    Article  MathSciNet  Google Scholar 

  10. U. Fößmeier, G. Kant, and M. Kaufmann. 2-visibility drawings of planar graphs. In S. North, editor, Proceedings of the 4th International Symposium on Graph Drawing, LNCS 1190, pages 155–168, California, USA, 1996.

    Google Scholar 

  11. X. He. On floor-plan of plane graphs. SIAM Journal on Computing, 28(6):2150–2167, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  12. X. He. A simple linear time algorithm for proper box rectangular drawings of plane graphs. Journal of Algorithms, 40(1):82–101, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. On-line maintenance of the four-connected components of a graph. In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, pages 793–801, San Juan, Puerto Rico, 1991. IEEE.

    Google Scholar 

  14. G. Kant. A more compact visibility representation. In Proceedings of the 19th Workshop on Graph-Theoretic Concepts in Computer Science, LNCS 790, pages 411–424, Utrecht, Netherlands, 1994.

    Google Scholar 

  15. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Kant. A more compact visibility representation. International Journal of Computational Geometry & Applications, 7(3):197–210, 1997.

    Article  MathSciNet  Google Scholar 

  17. G. Kant and X. He. Two algorithms for finding rectangular duals of planar graphs. In Proceedings of the 19th Workshop on Graph-Theoretic Concepts in Computer Science, LNCS 790, pages 396–410, Utrecht, Netherlands, 1994.

    Google Scholar 

  18. G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science, 172(1–2):175–193, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  19. C.-C. Liao, H.-I. Lu, and H.-C. Yen. Floor-planning via orderly spanning trees. In Proceedings of the 9th International Symposium on Graph Drawing, LNCS 2265, pages 367–377, Vienna, Austria, 2001.

    Google Scholar 

  20. H.-I. Lu. Improved compact routing tables for planar networks via orderly spanning trees. In O. H. Ibarra and L. Zhang, editors, Proceedings of the 8th International Conference on Computing and Combinatorics, LNCS 2387, pages 57–66, Singapore, August 15–17 2002.

    Google Scholar 

  21. C.-i. Nakano. Planar drawings of plane graphs. IEICE Transactions on Information and Systems, E83-D(3):384–391, Mar. 2000.

    Google Scholar 

  22. J. Nummenmaa. Constructing compact rectilinear planar layouts using canonical representation of planar graphs. Theoretical Computer Science, 99(2):213–230, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Otten and J. van Wijk. Graph representations in interactive layout design. In Proceedings of the IEEE International Symposium on Circuits and Systems, pages 914–918, 1978.

    Google Scholar 

  24. P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete & Computational Geometry, 1(4):343–353, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Schlag, F. Luccio, P. Maestrini, D. T. Lee, and C. K. Wong. A visibility problem in VLSI layout compaction. In F. P. Preparata, editor, Advances in Computing Research, volume 2, pages 259–282. JAI Press Inc. Greenwich, CT, 1985.

    Google Scholar 

  26. W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  27. W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 138–148, 1990.

    Google Scholar 

  28. R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. Discrete & Computational Geometry, 1(4):321–341, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Transactions in Circuits and Systems, 36:1230–1234, 1989.

    Article  MathSciNet  Google Scholar 

  30. K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresber Deutsche Math.-Verein, 46:26–32, 1936.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ching-Chi, L., Hsueh, L., Fan, S.I. (2003). Improved Compact Visibility Representation of Planar Graph via Schnyder’s Realizer. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-36494-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00623-7

  • Online ISBN: 978-3-540-36494-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics