Skip to main content

Transgenic Approaches to Engineer Nitrogen Metabolism

  • Chapter
Tree Transgenesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ávila C, Suárez MF, Gómez-Maldonado J, Cánovas FM (2001) Spatial and temporal expression of two cytosolic glutamine synthetase genes in Scots pine: functional implications on nitrogen metabolism during early stages of conifer development. Plant J 25:93–102.

    Article  PubMed  Google Scholar 

  • Ávila Sáez C, Muñoz-Chapuli R, Plomion C, Frigerio J, Cánovas FM (2000) Two genes encoding distinct cytosolic glutamine synthetases are closely linked in the pine genome. FEBS Lett 477:237–243.

    Article  PubMed  Google Scholar 

  • Bauer D, Biehler K, Fock H, Carrayol E, Hirel B, Migge A, Becker TW (1997) A role for cytosolic glutamine synthetase in the remobilization of leaf nitrogen during water stress in tomato. Physiol Plant 99:241–248.

    Article  CAS  Google Scholar 

  • Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve SJ, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J, Jansson S (2003) Gene expression in autumn leaves. Plant Physiol 131:430–442.

    Article  PubMed  Google Scholar 

  • Brugière N, Dubois F, Masclaux C, Sangwan RS and Hirel B (2000) Immunolocalization of glutamine synthetase in senescing tobacco (Nicotiana tabacum L.) leaves suggests that ammonia assimilation is progresively shifted to the mesophyll cytosol. Planta 211:519–527.

    Article  PubMed  Google Scholar 

  • Brunner AM, Busov VB, Strauss SH (2004) The poplar genome sequence: functional genomics in a keystone plant species. Trends Plant Sci 9:49–56.

    Article  PubMed  CAS  Google Scholar 

  • Caizzi R, Bozzetti MP, Caggese C, Ritossa F (1990) Homologous nuclear genes encode cytoplasmic and mitochondrial glutamine-synthetase in Drosophila melanogaster. J Mol Biol 212:17–26.

    Article  PubMed  CAS  Google Scholar 

  • Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154.

    Article  PubMed  CAS  Google Scholar 

  • Cánovas FM, Cantón FR, García-Gutiérrez A, Gallardo F, Crespillo R (1998) Molecular physiology of glutamine and glutamate biosynthesis in developing conifer seedlings. Physiol Plant 103:287–294.

    Article  Google Scholar 

  • Cánovas FM, Avila C, Cantón FR, Suárez MF, Gallardo F (2002) Regulación de la asimilación de amonio en plantas: interacciones C/N. In: Aparicio-Tejo (ed) Avances en el Metabolismo del Nitrógeno: de la Biología Molecular a la Agronomía. Universidad Pública de Navarra, Pamplona, Spain, pp 235–242.

    Google Scholar 

  • Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock H-P, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298.

    Article  PubMed  Google Scholar 

  • Cantón FR, Suárez MF, Cánovas FM (2005) Molecular aspects of nitrogen assimilation and recycling in trees. Photosynth Res 83:265–278.

    Article  PubMed  Google Scholar 

  • Carvalho H, Pereira S, Sunkel C, Salema R (1992) Detection of cytosolic glutamine synthetase in leaves of Nicotiana tabacum L. by immunocytochemical methods. Plant Physiol 100:1591–1594.

    Article  PubMed  CAS  Google Scholar 

  • Chen RD, Gadal P (1990) Do the mitochondria provide the 2-oxoglutarate needed for glutamate synthesis in higher plants? Plant Physiol Biochem 28:141–146.

    CAS  Google Scholar 

  • Coleman G (1997) Seasonal vegetative storage proteins of poplar. In: Klopfenstein N, Chun Y, Kim M, Ahuja M (eds) Micropropagation, genetic engineering, and molecular biology of Populus, Fort Collins, CO, Gen Tech Rep RM-GTR-297, US Department of Agriculture, Rocky Mountain Forest and Range Experiment Station, USA, pp 124–130.

    Google Scholar 

  • Cooke JEK, Brown AK, Wu R, Davis JM (2003) Gene expression associated with N-induced shifts in resource allocation in poplar. Plant Cell Environ 26:757–770.

    Article  CAS  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395.

    Article  Google Scholar 

  • Crété P, Caboche M, Meyer C (1997) Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant J 11:625–634.

    Article  PubMed  Google Scholar 

  • De la Torre F, García-Gutiérrez A, Crespillo C, Cantón FR, Avila C, Cánovas FM (2002) Functional expression of two pine glutamine synthetase genes in bacteria reveals that they encode cytosolic isoenzymes with different molecular and catalytic properties. Plant Cell Physiol 43:802–809.

    Article  PubMed  Google Scholar 

  • Djennane S, Chauvin J-E, Meyer C (2002) Glasshouse behaviour of eight transgenic potato clones with a modified nitrate reductase expression under two fertilization regimes. J Exp Bot 53:1037–1045.

    Article  PubMed  CAS  Google Scholar 

  • El-Khatib R, Hamerlynck EP, Gallardo F, Kirby EG (2004) Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress.Tree Physiol 24:729–736.

    PubMed  CAS  Google Scholar 

  • Fenning T, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20:291–296.

    Article  PubMed  CAS  Google Scholar 

  • Ferrario-Mery S, Suzuki A, Kunz C, Valadier MH, Roux Y, Hirel B, Foyer CH (2000) Modulation of amino acid metabolism in transformed tobacco plants deficient in Fd-GOGAT. Plant Soil 221:67–79.

    Article  CAS  Google Scholar 

  • Foyer CH, Ferrario S (1994) Modulation of carbon and nitrogen metabolism in transgenic plants with a view to improved biomass production. Biochem Soc Trans 22:909–915.

    PubMed  CAS  Google Scholar 

  • Fraisier V, Gojon A, Pascal Tillard P, Daniel-Vedele F (2000) Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source. Plant J 23:489–496.

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Sampalo R, Gallardo F, Cánovas FM, Kirby EG (2003) Assembly of a cytosolic pine glutamine synthetase holoenzyme in the leaf of transgenic poplar leads to an enhanced vegetative growth of young plants. Plant Cell Environ 26:411–418.

    Article  CAS  Google Scholar 

  • Fuentes SI, Allen DJ, Ortiz-López A, Hernández G (2001) Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J Exp Bot 52:1071–1081.

    Article  PubMed  CAS  Google Scholar 

  • Gallardo F, Gálvez S, Quesada MA, Cánovas FM, Núñez de Castro I (1988) Glutamine synthetase activity during the ripening of tomato fruit. Plant Physiol Biochem 26:747–752.

    CAS  Google Scholar 

  • Gallardo F, Fu J, Cantón FR, García-Gutiérrez A, Cánovas FM, Kirby EG (1999) Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Gallardo F, Fu J, Jing ZP, Kirby EG, Cánovas FM (2003) Genetic modification of amino acid metabolism in woody plants, metabolic networks in plants special issue. Plant Physiol Biochem 41:587–594.

    Article  CAS  Google Scholar 

  • Galván A, Fernández E (2001) Eukaryotic nitrate and nitrite transporters. Cell Mol Life Sci 58:225–233.

    Article  PubMed  Google Scholar 

  • Gálvez S, Gallardo F, Cánovas FM (1990) The occurrence of glutamine synthetase isoenzymes in tomato plants is correlated to plastid differentiation. J Plant Physiol 137:1–4.

    Google Scholar 

  • García-Gutiérrez A, Dubois F, Cantón FR, Gallardo F, Sangwan RS, Cánovas FM (1998) Two different modes of early development and nitrogen assimilation in gymnosperm seedlings. Plant J 13:187–199.

    Article  Google Scholar 

  • Gessler A, Kopriva S, Rennenberg, H (2004) Regulation of nitrate uptake at the whole-tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism. Tree Physiol 24:1313–1321.

    PubMed  CAS  Google Scholar 

  • Glass ADM, Brito DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants, Inorganic Nitrogen Assimilation Special issue. J Exp Bot 53:855–864.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Maldonado J, Avila C, de la Torre F, Cañas R, Cánovas FM, Campbell MM (2004) Functional interactions between a glutamine synthetase promoter and MYB proteins. Plant J 39: 513–526.

    Article  PubMed  Google Scholar 

  • Grignon C, Thibaud J-B, Lamaze T (1997) Transport du nitrate par la racine In: Morot-Gaudry J-F (ed) Assimilation de l’azote chez les plantes. Aspects physiologiques, biochimiques et moléculaires. INRA Editions, Paris, pp 27–43.

    Google Scholar 

  • Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA (2001) The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol 138:83–89.

    Article  CAS  Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270.

    Article  PubMed  CAS  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh M, Lam H, van de Loo FJ, Coruzzi G (1998) A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Natl Acad Sci USA 95:13965–13970.

    Article  PubMed  CAS  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812.

    Article  PubMed  CAS  Google Scholar 

  • Huang N-C, Chiang C-S, Crawford NM, Tsay Y-F (1996) CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell 8:2183–2191.

    Article  PubMed  CAS  Google Scholar 

  • Huber SC, Bachmann M, Huber JL (1996) Post-translational regulation of nitrate reductase activity: a role for Ca2+ and 14–3-3 proteins. Trends Plant Sci 1:432.

    Article  Google Scholar 

  • Ireland RJ, Lea PJ (1999) The enzymes of glutamine, glutamate, asparagine, and aspartate metabolism. In: Singh BK (ed) Plant amino acids. Biochemistry and biotechnology. Dekker, New York, pp 49–109.

    Google Scholar 

  • Jing ZP, Gallardo F, Pascual MB, Sampalo R, Romero J, Torres de Navarra A, Cánovas FM (2004) Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol Special Issue Populus Genomics 164:137–145.

    CAS  Google Scholar 

  • Keinonen-Mettälä K, Jalonen P, Eurola P, von Arnold S, von Weissenberg K (1996) Somatic embryogenesis of Pinus sylvestris. Scand J For Res 11:242–250.

    Article  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560.

    Article  CAS  Google Scholar 

  • Kruse A, Fieuw S, Heineke D, Muller-Rober B (1998) Antisense inhibition of cytosolic NADP-dependent isocitrate dehydrogenase in transgenic potato plants. Planta 205:82–91.

    Article  CAS  Google Scholar 

  • Le Van Quay G, Foyer C, Champigny M-L (1991) Effect of light and NO3 - on wheat leaf phosphoenolpyruvate carboxylase activity. Plant Physiol 97:1476–1482.

    Article  Google Scholar 

  • Lea P, Morot-Gaudry J-F, Hirel B (2002) Inorganic nitrogen assimilation special issue. J Exp Bot 53:773–979.

    Article  Google Scholar 

  • Lev-Yadun S, Sederoff R (2000) Pines as model gymnosperms to study evolution, wood formation, and perennial growth. J Plant Growth Regul 19:290–305.

    Article  CAS  Google Scholar 

  • Little R, Reyes-Ramirez F, Zhang Y, Van Heesswijk WC, Dixon R (2000) Signal transduction to the Azotobacter vinelandii NifL-NifA regulatory system is influenced dire ctly by interaction with 2-oxoglutarate and the PII regulatory protein. EMBO J 19:6041–6050.

    Article  PubMed  CAS  Google Scholar 

  • Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865–874.

    Article  PubMed  CAS  Google Scholar 

  • Man H, Boriel R, El-Khatib R, Kirby EG (2005) Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol 167:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Matt P, Krapp A, Haake V, Mock HP, Stitt M (2002) Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant J 30:663–677.

    Article  PubMed  CAS  Google Scholar 

  • Miflin B, Habash D Z (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987.

    Article  PubMed  CAS  Google Scholar 

  • Migge A, Carrayol E, Hirel B, Becker TW (2000) Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings. Planta 210:252–260.

    Article  PubMed  CAS  Google Scholar 

  • Ninnemann O, Jauniaux JC, Frommer WB (1994) Identification of a high affinity NH4+ transporter from plants. EMBO J 13:3464–3471.

    PubMed  CAS  Google Scholar 

  • Obara M, Sato T, Yamaya T (2001) Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.) J Exp Bot 52:1209–1217.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM (2002) Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light and photorespiration. Plant Physiol 129:1170–1180.

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002) Nitrate transport in plants: which gene and which control? Inorganic nitrogen assimilation special issue. J Exp Bot 53.825–834.

    Article  PubMed  CAS  Google Scholar 

  • Ortega JL, Temple SJ, Bagga S, Ghoshroy S, Sengupta-Gopalan C (2004) Biochemical and molecular characterization of transgenic Lotus japonicus plants constitutively over-expressing a cytosolic glutamine synthetase gene. Planta 219:807–818.

    Article  PubMed  CAS  Google Scholar 

  • Pascual MB (2002) Efecto del herbicida fosfinotricina sobre chopos transgénicos que sobreexpresan glutamina sintetasa, Tesis de Licenciatura, Universidad de Málaga, Spain.

    Google Scholar 

  • Pereira S, Carvalho H, Sunkel C, Salema R (1992) Immunocytolocalization of GS in mesophyll and phloem of leaves of Solanum tuberosum L. Protoplasma 167:66–73.

    Article  CAS  Google Scholar 

  • Pérez-García A, Pereira S, Pisarra J, García-Gutiérrez A, Cazorla F, Salema R, de Vicente A, Cánovas FM (1998) Cytosolic localization in tomato mesophyll cells of a novel glutamine synthetase induced in response to bacterial infection or phosphinothricin treatment. Planta 206:426–434.

    Article  Google Scholar 

  • Pérez-Rodríguez J, Suárez MF, Heredia R, Ávila C, Breton D, Trontin J-F, Filonova L, Bozhkov P, von Arnold S, Harvength L, Cánovas FM (2006) Expression patterns of two glutamine synthetase genes in zygotic and somatic pine embryos support specific roles in nitrogen metabolism during embryogenesis. New Phytol 169:35–44.

    Article  Google Scholar 

  • Ramarosandratana A, Harvengt L, Bouvet A, Calvayrac R, Pâques M (2001) Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of Maritime pine somatic embryos. Plant Sci 160:473–479.

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, de Rycke R, Kushnir S, van Doorsselaere J, Joseleau JP, Vuylsteke M, van Driessche G, van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on and carbohydrate metabolism. Plant Cell 16:2749–2771.

    Article  PubMed  CAS  Google Scholar 

  • Sauter JJ, VanCleve B (1994) storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees.Trees 8:297–304.

    Article  Google Scholar 

  • Scheible W-R, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499.

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW (1990) Studies on the uptake of nitrate in barley. Plant Physiol 93:1426–1432.

    Article  PubMed  CAS  Google Scholar 

  • Smith C, Weljie AM, Moorhead GBG (2003) Molecular properties of the putative nitrogen sensor PII from Arabidopsis thaliana. Plant J 33:353–360.

    Article  PubMed  CAS  Google Scholar 

  • Strauss SH (2003) Genomics, genetic engineering, and domestication of crops. Science 300:61–62.

    Article  PubMed  CAS  Google Scholar 

  • Suárez MF, Avila C, Gallardo F, Cantón FR, García-Gutiérrez A, Claros MG, Cánovas FM (2002) Molecular and enzymatic analysis of ammonium assimilation in woody plants, inorganic nitrogen assimilation special issue. J Exp Bot 53:891–904.

    Article  PubMed  Google Scholar 

  • Sugiyama K, Hayakawa T, Kudo T, Ito T, Yamaya T (2004) Interaction of N-acetylglutamate kinase with a PII-like protein in rice. Plant Cell Physiol 45:1768–1778.

    Article  PubMed  CAS  Google Scholar 

  • Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90:766–687.

    Article  Google Scholar 

  • Valerberghe GC, Schuller KA, Smith RG, Feil R, Plaxton WC, Turpin DH (1990) Relationship between NH4+ assimilation rate and in vivo phosphoenolpyruvate carboxylase. Plant Physiol 94:284–290.

    Article  Google Scholar 

  • Vincent R, Fraisier V, Chaillou S, Limami A, Deleens E, Phillipson B, Douat C, Boutin J-P, Hirel B (1997) Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta 201:424–433.

    Article  PubMed  CAS  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker M-T, Vaucheret H, Caboche M (1993) Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J 3:315–324.

    Article  PubMed  CAS  Google Scholar 

  • Wang MY, Siddiqi MY, Glass ADM (1993a) Ammonium uptake by rice roots I. Fluxes and subcellular distribution of 13NH4+. Plant Physiol 103:1249–1258.

    Article  PubMed  CAS  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth JJ, Glass ADM (1993b) Ammonium uptake by rice roots II. Kinetics of 13NH4+ influx across the plasmalemma. Plant Physiol 103:1259–1267.

    Article  PubMed  CAS  Google Scholar 

  • Wetzel S, Demmers C, Greenwood J (2001) Seasonally fluctuating bark proteins are a potential form of nitrogen storage in three temperate hardwoods. Planta 178:275–281.

    Article  Google Scholar 

  • Wolt JD, Wolt J (1994) Soil solution chemistry: applications to environmental science and agriculture. Wiley, New York.

    Google Scholar 

  • Zhu B, Coleman G (2001) Phytochrome-mediated photoperiod perception, shoot growth, glutamine, calcium and protein phosphorylation influence the activity of the poplar bark storage protein gene promoter (bspA). Plant Physiol 126:342–351.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

CÁNovas, F.M., Gallardo, F., Jing, Z.P., Pascual, M.B. (2006). Transgenic Approaches to Engineer Nitrogen Metabolism. In: Fladung, M., Ewald, D. (eds) Tree Transgenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32199-3_8

Download citation

Publish with us

Policies and ethics