Skip to main content

Adapting Multi-Objective Meta-Heuristics for Graph Partitioning

  • Conference paper
Applied Soft Computing Technologies: The Challenge of Complexity

Part of the book series: Advances in Soft Computing ((AINSC,volume 34))

Abstract

Real optimization problems often involve not one, but multiple objectives, usually in conflict. In single-objective optimization there exists a global optimum, while in the multi-objective case no optimal solution is clearly defined, but rather a set of solutions, called Pareto-optimal front. Thus, the goal of multiobjective strategies is to generate a set of non-dominated solutions as an approximation to this front. This paper presents a novel adaptation of some of these metaheuristics to solve the multi-objective Graph Partitioning problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleta A, Codina JM, Sanchez J, Gonzalez A (2001) Graph-Partitioning Based Instruction Scheduling for Clustered Processors. Proc. 34th ACM/EEE International Symposium on Microarchitecture, pp 150–159

    Google Scholar 

  2. Baños R, Gil C, Ortega J, Montoya FG (2004) Parallel Multilevel Metaheuristic for Graph Partitioning, J. of Heuristics, 10(3):315–336

    Article  Google Scholar 

  3. Czyzak P, Jaszkiewicz A (1998) Pareto Simulated Annealing – a Metaheuristic Technique for Multiple-objective Combinatorial Optimization, J. of Multi-Criteria Decision Analysis 7:34–47

    Article  MATH  Google Scholar 

  4. Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Company, San Francisco

    Google Scholar 

  5. Gil C, Ortega J, Montoya MG, Baños R, (2002) A Mixed Heuristic for Circuit Partitioning, Computational Optimization and Applications J. 23(3):321–340

    Article  MATH  Google Scholar 

  6. Gil C, Ortega J, Montoya MG (2000) Parallel VLSI Test in a Shared Memory Multiprocessors, Concurrency: Practice and Experience, 12(5):311–326

    Article  MATH  Google Scholar 

  7. Glover F, Laguna M (1993) Tabu Search. In: C.R. Reeves (eds) Modern Heuristic Techniques for Combinatorial Problems. Blackwell, London pp. 70–150

    Google Scholar 

  8. Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley

    Google Scholar 

  9. Graph Partitioning Arch, http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

    Google Scholar 

  10. Hansen PH (1997) Tabu Search for Multiobjective Optimization: MOTS. Proc. of the 13th International Conference on Multiple Criteria Decision Making

    Google Scholar 

  11. Karypis G, Kumar V (1998) A Fast High Quality Multilevel Scheme for Partitioning Irregular Graphs. Tech. Report TR-95-035, University of Minnesota

    Google Scholar 

  12. Kirkpatrick S, Gelatt CD, Vecchi MP, (1983) Optimization by Simulated Annealing. Science 220(4598):671–680

    MathSciNet  Google Scholar 

  13. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E, (1953) Equation of State Calculations by Fast Computing Machines. J. of Chemical Physics, 21(6):1087–1092

    Article  Google Scholar 

  14. Rummler A, Apetrei A (2002) Graph Partitioning Revised – a Multiobjective Perspective. Proc. of 6th MultiConf. On Syst., Cybern. and Informatics

    Google Scholar 

  15. Selvakkumaran N, Karypis G (2003) Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization. Proc. Int. Conference on Computer Aided Design, pp 726–733

    Google Scholar 

  16. Serafini P. (1993) Simulated Annealing for Multi-Objective Optimization problems. In G.H. Tzeng et al. (eds) Multiple Criteria Decision Making. Expand and Enrich the Domains of Thinking and Application, Springer Berlin, pp. 283–292

    Google Scholar 

  17. Ulungu E, Teghem J, Fortemps P, Tuyytens D (1999) MOSA Method: A Tool for Solving Multiobjective Combinatorial Optimization Problems. J. of Multi-Criteria Decision Analysis 8(4):221–236

    Article  MATH  Google Scholar 

  18. Walshaw C, Cross M, Everett MG (1999) Mesh Partitioning and Load-balancing for Distributed Memory Parallel Systems. In: B. Topping (eds) Parallel & Distributed Proc. for Computational Mechanics: Systems and Tools, pp. 110–123

    Google Scholar 

  19. Zitzler E, Thiele L (1999) Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4):257–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Baños, R., Gil, C., Montoya, M., Ortega, J. (2006). Adapting Multi-Objective Meta-Heuristics for Graph Partitioning. In: Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds) Applied Soft Computing Technologies: The Challenge of Complexity. Advances in Soft Computing, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31662-0_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-31662-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31649-7

  • Online ISBN: 978-3-540-31662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics