Skip to main content

Pharmacological Modulation of the Heat Shock Response

  • Chapter
Molecular Chaperones in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 172))

Abstract

Life presents a continuous series of stresses. Increasing the adaptation capacity of the organism is a long-term survival factor of various organisms and has become an attractive field of intensive therapeutic research. Induction of the heat shock response promotes survival after a wide variety of environmental stresses. Preclinical studies have proven that physiological and pharmacological chaperone inducers and co-inducers are an efficient therapeutic approach in different acute and chronic diseases. In this chapter, we summarize current knowledge of the current state of chaperone modulation and give a comprehensive list of the main drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aki T, Yoshida K, Mizukami Y (2003) The mechanism of αB-crystallin gene expression by proteasome inhibition. Biochem Biophys Res Commun 311:162–167

    Article  PubMed  CAS  Google Scholar 

  • Amaral MD (2004) CFTR and chaperones: processing and degradation. J Mol Neurosci 23:41–48

    PubMed  CAS  Google Scholar 

  • Ambra R, Mocchegiani E, Giacconi R, Canali R, Rinna A, Malavolta M, Virgili F (2004) Characterization of the hsp70 response in lymphoblasts from aged and centenarian subjects and differential effects of in vitro zinc supplementation. Exp Gerontol 39:1475–1484

    Article  PubMed  CAS  Google Scholar 

  • Auluck PK, Bonini NM (2002) Pharmacological prevention of Parkinson disease in Drosophila. Nat Med 8: 1185–1186

    Article  PubMed  CAS  Google Scholar 

  • Bedirli A, Sakrak O, Muhtaroglu S, Soyuer I, Guler I, Riza Erdogan A, Sozuer EM (2004) Ergothioneine pretreatment protects the liver from ischemia-reperfusion injury caused by increasing hepatic heat shock protein 70. J Surg Res 122:96–102

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10[Suppl]:S2–S9

    PubMed  Google Scholar 

  • Bush, KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 14:9086–9092

    Google Scholar 

  • Bush KT, George SK, Zhang PL, Nigam SK (1999) Pretreatment with inducers of ER molecular chaperones protects epithelial cells subjected to ATP depletion. Am J Physiol 277:F211–F218

    PubMed  CAS  Google Scholar 

  • Carmichael J, Chatellier J, Woolfson A, Milstein C, Fersht AR, Rubinsztein DC (2000). Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington’s disease. Proc Natl Acad Sci U S A 97:9701–9705

    Article  PubMed  CAS  Google Scholar 

  • Chan JY, Ou CC, Wang LL, Chan SH (2004) Heat shock protein 70 confers cardiovascular protection during endotoxemia via inhibition of nuclear factor-kappaB activation and inducible nitric oxide synthase expression in the rostral ventrolateral medulla. Circulation 110:3560–3566

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Liu YF, Liang J (2002) Protective effect of zinc: a potent heat shock protein inducer in cold preservation of rat liver. Hepatobiliary Pancreat Dis Int 1:258–261

    PubMed  CAS  Google Scholar 

  • Chong KY, Lai CC, Lille S, Chang C, Su CY (1998) Stable overexpression of the constitutive form of heat shock protein 70 confers oxidative protection. J Mol Cell Cardiol 30:599–608

    Article  PubMed  CAS  Google Scholar 

  • Connolly EM, Kelly CJ, Chen G, O’Grady T, Kay E, Leahy A, Bouchier-Hayes DJ (2003) Pharmacological induction of HSP27 attenuates intimal hyperplasia in vivo. Eur J Vasc Endovasc Surg 25:40–47

    Article  PubMed  CAS  Google Scholar 

  • Christians ES, Yan LJ, Benjamin IJ (2002) Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 30:S43–S50

    CAS  Google Scholar 

  • Csermely P (2001) Chaperone overload as a possible contributor to civilization diseases. Trends Genet 17: 701–704

    Article  PubMed  CAS  Google Scholar 

  • Csermely P (2004) Strong links are important — but weak links stabilize them. Trends Biochem Sci 29: 331–334

    Article  PubMed  CAS  Google Scholar 

  • Csermely P, Ágoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. www.arxiv.org/q-bio.MN/0412045 Trends Pharmacol Sci 26:178–182

    Article  PubMed  CAS  Google Scholar 

  • Csermely P (2005) Weak links: stabilizers of complex systems from proteins to social networks. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Csont T, Balogh G, Csonka C, Boros I, Horváth I, Vígh L, Ferdinándy P (2002) Hyperlipidemia induced by high cholesterol diet inhibits heat shock response in rat hearts. Biochem Biophys Res Commun 290: 1535–1538

    Article  PubMed  CAS  Google Scholar 

  • Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10: 1511–1518

    Article  PubMed  CAS  Google Scholar 

  • DeFranco DB, Ho L, Falke E, Callaway CW (2004) Small molecule activators of the heat shock response and neuroprotection from stroke. Curr Atheroscler Rep 6:295–300

    PubMed  Google Scholar 

  • Deng WG, Ruan KH, Du M, Saunders MA, Wu KK (2001) Aspirin and salicylate bind to immunoglobulin heavy chain binding protein (BiP) and inhibit its ATPase activity in human fibroblasts. FASEB J 15:2463–2470

    Article  PubMed  CAS  Google Scholar 

  • Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL (2001) Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 16: 210–219

    Article  PubMed  CAS  Google Scholar 

  • Fujiki M, Kobayashi H, Inoue R, Tatsuya A, Ishii K (2004) Single oral dose of geranylgerany-lacetone for protection against delayed neuronal death induced by transient ischemia. Brain Res 1020:210–213

    Article  PubMed  CAS  Google Scholar 

  • Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112

    PubMed  CAS  Google Scholar 

  • Griffin TM, Valdez TV, Mestril R (2004) Radicicol activates heat shock protein expression and cardioprotection in neonatal rat cardiomyocytes. Am J Physiol Heart Circ Physiol 287:H1081–H1088

    Article  PubMed  CAS  Google Scholar 

  • Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B (2001) In vitro studies showthatHsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914:66–73

    Article  PubMed  CAS  Google Scholar 

  • Hamilton KL, Gupta S, Knowlton AA (2004) Estrogen and regulation of heat shock protein expression in female cardiomyocytes: cross-talk with NF kappa B signaling. J Mol Cell Cardiol 36:577–584

    Article  PubMed  CAS  Google Scholar 

  • Hargitai J, Lewis H, Boros I, Rácz T, Fiser A, Kurucz I, Benjamin I, Pénzes Z, Vígh L, Csermely P, Latchman DS (2003) Bimoclomol, a heat shock protein co-inducer acts by the prolonged activation of heat shock factor-1. Biochem Biophys Res Commun 307:689–695

    Article  PubMed  CAS  Google Scholar 

  • Hashiguchi N, Ogura H, Tanaka H, Koh T, Nakamori Y, Noborio M, Shiozaki T, Nishino M, Kuwagata Y, Shimazu T, Sugimoto H (2001) Enhanced expression of heat shock proteins in activated polymorphonuclear leukocytes in patients with sepsis. J Trauma 51:1104–1109

    Article  PubMed  CAS  Google Scholar 

  • Hatayama T, Asai Y, Wakatsuki T, Kitamura T, Imahara H (1993) Regulation of hsp70 synthesis induced by cupric sulfate and zinc sulfate in thermotolerant HeLa cells. J Biochem (Tokyo) 114:592–597

    CAS  Google Scholar 

  • Hauser GJ, Dayao EK, Wasserloos K, Pitt BR, Wong HR (1996) HSP induction inhibits iNOS mRNA expression and attenuates hypotension in endotoxin-challenged rats. Am J Physiol 271:H2529–H2535

    PubMed  CAS  Google Scholar 

  • Hay DG, Sathasivam K, Tobaben S, Stahl B, Marber M, Mestril R, Mahal A, Smith DL, Woodman B, Bates GP (2004) Progressive decrease in chaperone protein levels in amouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet 13:1389–1405

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Sawa Y, Fukuyama N, Nakazawa H, Matsuda H (2002) Preoperative glutamine administration induces heat-shock protein 70 expression and attenuates cardiopulmonary bypass-induced inflammatory response by regulating nitric oxide synthase activity. Circulation 106:2601–2607

    PubMed  CAS  Google Scholar 

  • Henics T, Nagy E, Oh HJ, Csermely P, von Gabain A, Subjeck JR (1999) Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. J Biol Chem 274:17318–17324

    Article  PubMed  CAS  Google Scholar 

  • Honma Y, Tani M, Yamamura K, Takayama M, Hasegawa H (2003) Preconditioning with heat shock further improved functional recovery in young adult but not in middle-aged rat hearts. Exp Gerontol 38:299–306

    Article  PubMed  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease byDAF-16 and heat-shock factor. Science 300:1142–1145

    Article  PubMed  CAS  Google Scholar 

  • Ianaro A, Ialenti A, Maffia P, DiMeglio P, Di Rosa M, Santoro MG (2003) Anti-inflammatory activity of 15-deoxy-delta12,14-PGJ2 and 2-cyclopenten-1-one: role of the heat shock response. Mol Pharmacol 64:85–93

    Article  PubMed  CAS  Google Scholar 

  • Ikeyama S, Kusumoto K, Miyake H, Rokutan K, Tashiro S (2001) Anon-toxic heat shock protein 70 inducer, geranylgeranylacetone, suppresses apoptosis of cultured rat hepatocytes caused by hydrogen peroxide and ethanol. J Hepatol 35:53–61

    Article  PubMed  CAS  Google Scholar 

  • Ishii Y, Kwong JM, Caprioli J (2003) Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci 44:1982–1992

    PubMed  Google Scholar 

  • Jurivich DA, Sistonen L, Kroes RA, Morimoto RI (1992) Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245

    PubMed  CAS  Google Scholar 

  • Kabakov AE, Budagova KR, Latchman DS, Kampinga HH (2002) Stressful preconditioning and HSP70 overexpression attenuate proteotoxicity of cellular ATP depletion. Am J Physiol Cell Physiol 283:C521–C534

    PubMed  CAS  Google Scholar 

  • Kalmar B, Burnstock G, Vrbova G, Urbanics R, Csermely P, Greensmith L (2002) Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats. Exp Neurol 176:87–97

    Article  PubMed  CAS  Google Scholar 

  • Kalmar B, Greensmith L, Malcangio M, Macmahon SB, Csermely P, Burnstock G (2003) The effect of treatment with BRX-220, a co-inducer of heat shock proteins, on sensory fibres of the rat following peripheral nerve injury. Exp Neurol 184:636–647

    Article  PubMed  CAS  Google Scholar 

  • Khar A, Ali AM, Pardhasaradhi BV, Varalakshmi CH, Anjum R, Kumari AL (2001) Induction of stress response renders human tumor cell lines resistant to curcumin-mediated apoptosis: role of reactive oxygen intermediates. Cell Stress Chaperones 6:368–376

    Article  PubMed  CAS  Google Scholar 

  • Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, Greensmith L (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10:402–405

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Li GC (1999) Proteasome inhibitors lactacystin and MG132 inhibit the dephosphorylation of HSF1 after heat shock and suppress thermal induction of heat shock gene expression. Biochem Biophys Res Commun 264:352–358

    Article  PubMed  CAS  Google Scholar 

  • Knowlton AA, Sun L (2001) Heat-shock factor-1, steroid hormones, and regulation of heatshock protein expression in the heart. Am J Physiol Heart Circ Physiol 280:H455–H464

    PubMed  CAS  Google Scholar 

  • Kupatt C, Dessy C, Hinkel R, Raake P, Daneau G, Bouzin C, Boekstegers P, Feron O (2004) Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arterioscler Thromb Vasc Biol 24:1435–1441

    PubMed  CAS  Google Scholar 

  • Kürthy M, Mogyorósi T, Nagy K, Kukorelli T, Jednákovits A, Tálosi L, Bí ró K (2002) Effect of BRX-220 against peripheral neuropathy and insulin resistance in diabetic rat models. Ann N Y Acad Sci 96:482–489

    Google Scholar 

  • Laroia G, Cuesta R, Brewer G, Schneider RJ (1999) Control of mRNA decay by heat shockubiquitin-proteasome pathway. Science 284:499–502

    Article  PubMed  CAS  Google Scholar 

  • Lawson B, Brewer JW, Hendershot LM (1998) Geldanamycin, an hsp90/GRP94-binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway. J Cell Physiol 174:170–178

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Tee LY, Warmke T, Vinjamoori A, Cai A, Fagan AM, Snider BJ (2004) A proteasomal stress response: pre-treatmentwith proteasome inhibitors increases proteasome activity and reduces neuronal vulnerability to oxidative injury. J Neurochem 91:996–1006

    PubMed  CAS  Google Scholar 

  • Mocchegiani E, Muzzioli M, Giacconi R (2000) Zinc, metallothioneins, immune responses, survival and ageing. Biogerontology 1:133–143

    Article  PubMed  CAS  Google Scholar 

  • Moore JB, Blanchard RK, Cousins RJ (2003) Dietary zinc modulates gene expression in murine thymus: results from a comprehensive differential display screening. Proc Natl Acad Sci U S A 100:3883–3888

    PubMed  CAS  Google Scholar 

  • Nagayama S, Jono H, Suzaki H, Sakai K, Tsuruya E, Yamatsu I, Isohama Y, Miyata T, Kai H (2001) Carbenoxolone, a new inducer of heat shock protein 70. Life Sci 69:2867–2873

    Article  PubMed  CAS  Google Scholar 

  • Nánási PP, Jednákovits A (2001) Multilateral in vivo and in vitro protective effects of the novel heat shock protein co-inducer, bimoclomol: results of preclinical studies. Cardiovasc Drug Rev 19: 133–151

    PubMed  Google Scholar 

  • Neckers L (2003) Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr Med Chem 10:733–739

    Article  PubMed  CAS  Google Scholar 

  • Oda H, Miyake H, Iwata T, Kusumoto K, Rokutan K, Tashiro S (2002) Geranylgeranylacetone suppresses inflammatory responses and improves survival aftermassive hepatectomy in rats. J Gastrointest Surg 6:464–472

    Article  PubMed  Google Scholar 

  • Odashima M, Otaka M, Jin M, Konishi N, Sato T, Kato S, Matsuhashi T, Nakamura C, Watanabe S (2002) Induction of a 72-kDa heat-shock protein in cultured rat gastric mucosal cells and rat gastric mucosa by zinc L-carnosine. Dig Dis Sci 47:2799–2804

    Article  PubMed  CAS  Google Scholar 

  • Oehler R, Pusch E, Dungel P, Zellner M, Eliasen MM, Brabec M, Roth E (2002) Glutamine depletion impairs cellular stress response in human leucocytes. Br J Nutr 87[Suppl 1]: S17–S21

    PubMed  CAS  Google Scholar 

  • Papp E, Nardai G, Soti C, Csermely P (2003) Molecular chaperones, stress proteins and redox homeostasis. Biofactors 17:249–257

    PubMed  CAS  Google Scholar 

  • Park HG, Han SI, Oh SY, Kang HS (2005) Cellular responses to mild heat stress. Cell Mol Life Sci 62: 10–23

    Article  PubMed  CAS  Google Scholar 

  • Paroo Z, Haist JV, Karmazyn M, Noble EG (2002) Exercise improves postischemic cardiac function in males but not females: consequences of a novel sex-specific heat shock protein 70 response. Circ Res 90:911–917

    Article  PubMed  CAS  Google Scholar 

  • Paslaru L, Rallu M, Manuel M, Davidson S, Morange M (2000) Cyclosporin A induces an atypical heat shock response. Biochem Biophys Res Commun 269:464–469

    Article  PubMed  CAS  Google Scholar 

  • Perdrizet GA, Kaneko H, Buckley TM, Fishman MS, Pleau M, Bow L, Schweizer RT (1993) Heat shock recovery protects renal allografts from warm ischemic injury and enhances HSP72 production. Transplant Proc 25:1670–1673

    PubMed  CAS  Google Scholar 

  • Pritts TA, Hungness ES, Hershko DD, Robb BW, Sun X, Luo GJ, Fischer JE, Wong HR, Hasselgren PO (2002) Proteasome inhibitors induce heat shock response and increase IL-6 expression in human intestinal epithelial cells. Am J Physiol Regul Integr Comp Physiol 282:R1016–R1026

    PubMed  CAS  Google Scholar 

  • Rakonczay Z Jr, Ivanyi B, Varga I, Boros I, Jednakovits A, Nemeth I, Lonovics J, Takacs T (2002a) Nontoxic heat shock protein coinducer BRX-220 protects against acute pancreatitis in rats. Free Radic Biol Med 32:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Rakonczay Z Jr, Mandi Y, Kaszaki J, Ivanyi B, Boros I, Lonovics J, Takacs T (2002b) Induction of HSP72 by sodium arsenite fails to protect against cholecystokinin-octapeptideinduced acute pancreatitis in rats. Dig Dis Sci 47:1594–1603

    Article  PubMed  CAS  Google Scholar 

  • Rattan SI (2004) Mechanisms of hormesis through mild heat stress on human cells. Ann N Y Acad Sci 1019: 554–558

    Article  PubMed  CAS  Google Scholar 

  • Rokutan K (2000) Role of heat shock proteins in gastricmucosal protection. J Gastroenterol Hepatol 15[Suppl]:D12–D19

    PubMed  CAS  Google Scholar 

  • Romano CC, Benedetto N, Catania MR, Rizzo A, Galle F, Losi E, Hasty DL, Rossano F (2004) Commonly used antibiotics induce expression of Hsp 27 and Hsp 60 and protect human ymphocytes from apoptosis. Int Immunopharmacol 4:1067–1073

    Article  PubMed  CAS  Google Scholar 

  • Rossi A, Elia G, Santoro MG (1996) 2-Cyclopenten-1-one, a new inducer of heat shock rotein 70 with antiviral activity. J Biol Chem 271:32192–32196

    Article  PubMed  CAS  Google Scholar 

  • Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, Santoro MG (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 403:103–108

    PubMed  CAS  Google Scholar 

  • Sammut IA, Harrison JC (2003) Cardiac mitochondrial complex activity is enhanced by heat shock proteins. Clin Exp Pharmacol Physiol 30:110–115

    Article  PubMed  CAS  Google Scholar 

  • Sanders MM, Kon C (1991) Glutamine is a powerful effector of heat shock protein expression in Drosophila Kc cells. J Cell Physiol 146:180–190

    Article  PubMed  CAS  Google Scholar 

  • Shallom JM, Di Carlo AL, Ko D, Penafiel LM, Nakai A, Litovitz TA (2002) Microwave exposure induces Hsp70 and confers protection against hypoxia in chick embryos. J Cell Biochem 86:490–496

    Article  PubMed  CAS  Google Scholar 

  • Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10:1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    PubMed  CAS  Google Scholar 

  • Sood A, Mathew R, Trachtman H (2001) Cytoprotective effect of curcumin in human proximal tubule epithelial cells exposed to shiga toxin. Biochem Biophys Res Commun 283:36–41

    Article  PubMed  CAS  Google Scholar 

  • Sőti C, Csermely P (2003) Aging and molecular chaperones. Exp Gerontol 38:1037–1040

    PubMed  Google Scholar 

  • Sőti C, Pál C, Papp B, Csermely P (2005) Molecular chaperones as regulatory elements of cellular networks. Curr Opin Cell Biol 17:210–215

    PubMed  Google Scholar 

  • Sreedhar AS, Pardhasaradhi BV, Begum Z, Khar A, Srinivas UK (1999) Lack of heat shock response triggers programmed cell death ina rat histiocytic cell line. FEBS Lett 456:339–342

    Article  PubMed  CAS  Google Scholar 

  • Sreedhar AS, Csermely P (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 101:227–257

    Article  PubMed  CAS  Google Scholar 

  • Stangl K, Gunther C, Frank T, Lorenz M, Meiners S, Ropke T, Stelter L, Moobed M, Baumann G, Kloetzel PM, Stangl V (2002) Inhibition of the ubiquitin-proteasome pathway induces differential heat-shock protein response in cardiomyocytes and renders early cardiac protection. Biochem Biophys Res Commun 291:542–549

    Article  PubMed  CAS  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Chang J, Kirchhoff SR, Knowlton AA (2000) Activation of HSF and selective increase in heat-shock proteins by acute dexamethasone treatment. Am J Physiol Heart Circ Physiol 278:H1091–H1097

    PubMed  CAS  Google Scholar 

  • Tanonaka K, Toga W, Takahashi M, Kawana K, Miyamoto Y, Yoshida H, Takeo S (2003) Hsp70 attenuates hypoxia/reoxygenation-induced activation of poly(ADP-ribose) synthetase in the nucleus of adult rat cardiomyocytes. Mol Cell Biochem 248:149–155

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Khazaeli AA, Curtsinger JW (1997) Chaperoning extended life. Nature 390:30

    Article  PubMed  CAS  Google Scholar 

  • Thirumalai D, Lorimer GH (2001) Chaperonin-mediated protein folding. Annu Rev Biophys Biomol Struct 30: 245–269

    Article  PubMed  CAS  Google Scholar 

  • Török Z, Goloubinoff P, Horváth I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vígh L (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci U S A 98: 3098–3103

    PubMed  Google Scholar 

  • Török Z, Tsvetkova NM, Balogh G, Horváth I, Nagy E, Pénzes Z, Hargitai J, Bensaude O, Csermely P, Crowe JH, Maresca B, Vígh L (2003) Heat shock protein co-inducers with no effect on protein denaturation specifically modulate the membrane lipid phase. Proc Natl Acad Sci U S A 100:3131–3136

    PubMed  Google Scholar 

  • Tsvetkova NM, Horváth I, Török Z, Wolkers WF, Balogi Z, Shigapova N, Crowe LM, Tablin F, Vierling E, Crowe JH, Vígh L (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci U S A 99:13504–13509

    Article  PubMed  CAS  Google Scholar 

  • Valen G, Kawakami T, Tahepold P, Dumitrescu A, Lowbeer C, Vaage J (2000) Glucocorticoid pretreatment protects cardiac function and induces cardiac heat shock protein 72. Am J Physiol Heart Circ Physiol 279:H836–H843

    PubMed  CAS  Google Scholar 

  • Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, Libert C (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16:685–695

    PubMed  Google Scholar 

  • Vígh L, Literáti Nagy P, Horváth I, Török Z, Balogh G, Glatz A, Kovács E, Boros I, Ferdinándy P, Farkas B, Jaszlits L, Jednákovits A, Korányi L, Maresca B (1997) Bimoclomol: a nontoxic, hydroxilamine derivative with stress protein-inducing activity and cytoprotective effects. Nat Med 3:1150–1154

    PubMed  Google Scholar 

  • Voss MR, Stallone JN, Li M, Cornelussen RN, Knuefermann P, Knowlton AA (2003) Gender differences in the expression of heat shock proteins: the effect of estrogen. Am J Physiol Heart Circ Physiol 285:H687–H692

    PubMed  CAS  Google Scholar 

  • Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428

    PubMed  CAS  Google Scholar 

  • Welch WJ (1992) Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72:1063–1081

    PubMed  CAS  Google Scholar 

  • Welch WJ (2004) Role of quality control pathways in human diseases involving protein misfolding. Semin Cell Dev Biol 15:31–38

    Article  PubMed  CAS  Google Scholar 

  • Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G, Kim S, Gu W, Devlin JP, Silverman RB, Morimoto RI (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279: 56053–56060

    Article  PubMed  CAS  Google Scholar 

  • Wischmeyer P (2002) Glutamine and heat shock protein expression. Nutrition 18:225–228

    Article  PubMed  CAS  Google Scholar 

  • Wischmeyer P (2004) Glutamine, heat shock protein, and inflammation-opportunity from the midst of difficulty. Nutrition 20:583–585

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Agashe VR, Siegers K, Hartl FU (2004): Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Luo H, Fu W, Mattson MP (1999) The endoplasmic reticulumstress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155:302–314

    Article  PubMed  CAS  Google Scholar 

  • Yu ZF, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J Neurosci Res 57:830–839

    Article  PubMed  CAS  Google Scholar 

  • Yuan CM, Bohen EM, Musio F, Carome MA (1996) Sublethal heat shock and cyclosporine exposure produce tolerance against subsequent cyclosporine toxicity. Am J Physiol 271:F571–F578

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Csermely .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sőti, C., Csermely, P. (2006). Pharmacological Modulation of the Heat Shock Response. In: Starke, K., Gaestel, M. (eds) Molecular Chaperones in Health and Disease. Handbook of Experimental Pharmacology, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29717-0_17

Download citation

Publish with us

Policies and ethics