Skip to main content

Experimental Therapy of Genetic Arrhythmias: Disease-Specific Pharmacology

  • Chapter
Basis and Treatment of Cardiac Arrhythmias

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 171))

Abstract

The integration between molecular biology and clinical practice requires the achievement of fundamental steps to link basic science to diagnosis and management of patients. In the last decade, the study of genetic bases of human diseases has achieved several milestones, and it is now possible to apply the knowledge that stems from the identification of the genetic substrate of diseases to clinical practice. The first step along the process of linking molecular biology to clinical medicine is the identification of the genetic bases of inherited diseases. After this important goal is achieved, it becomes possible to extend research to understand the functional impairments of mutant protein(s) and to link them to clinical manifestations (genotype-phenotype correlation). In genetically heterogeneous diseases, it may be possible to identify locus-specific risk stratification and management algorithms. Finally, the most ambitious step in the study of genetic disease is to discover a novel pharmacological therapy targeted at correcting the inborn defect (locus-specific therapy) or even to “cure” the DNA abnormality by replacing the defective gene with gene therapy. At present, this curative goal has been successful only for very few diseases. In the field of inherited arrhythmogenic diseases, several genes have been discovered, and genetics is now emerging as a source of information contributing not only to a better diagnosis but also to risk stratification and management of patients. The functional characterization of mutant proteins has opened new perspectives about the possibility of performing genespecific or mutation-specific therapy. In this chapter, we will briefly summarize the genetic bases of inherited arrhythmogenic conditions and we will point out how the information derived from molecular genetics has influenced the “optimal use of traditional therapies” and has paved the way to the development of gene-specific therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA (1999) MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97:175–187

    Article  CAS  PubMed  Google Scholar 

  • Abriel H, Wehrens XH, Benhorin J, Kerem B, Kass RS (2000) Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. Circulation 102:921–925

    CAS  PubMed  Google Scholar 

  • Antzelevitch C (2001) The Brugada syndrome: ionic basis and arrhythmia mechanisms. J Cardiovasc Electrophysiol 12:268–272

    Article  CAS  PubMed  Google Scholar 

  • Belhassen B, Viskin S, Fish R, Glick A, Setbon I, Eldar M (1999) Effects of Electrophysiologic-guided therapy with Class IA antiarrhythmic drugs on the long-term outcome of patients with idiopathic ventricular fibrillation with or without the Brugada syndrome. J Cardiovasc Electrophysiol 10:1301–1312

    CAS  PubMed  Google Scholar 

  • Belhassen B, Glick A, Viskin S (2004) Efficacy of quinidine in high-risk patients with Brugada syndrome. Circulation 110:1731–1737

    Article  PubMed  Google Scholar 

  • Bellocq C, van Ginneken AC, Bezzina CR, Alders M, Escande D, Mannens MM, Baro I, Wilde AA (2004) Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109:2394–2397

    Article  PubMed  Google Scholar 

  • Benhorin J, Taub R, Goldmit M, Kerem B, Kass RS, Windman I, Medina A (2000) Effects of flecainide in patients with new SCN5A mutation: mutation-specific therapy for long-QT syndrome? Circulation 101:1698–1706

    CAS  PubMed  Google Scholar 

  • Bennett PB, Yazawa K, Makita N, George AL Jr (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685

    Article  CAS  PubMed  Google Scholar 

  • Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW, van Langen IM, Tan-Sindhunata G, Bink-Boelkens MT, Der Hout AH, Mannens MM, Wilde AA (1999) A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res 85:1206–1213

    CAS  PubMed  Google Scholar 

  • Bianchi L, Shen Z, Dennis AT, Priori SG, Napolitano C, Ronchetti E, Bryskin R, Schwartz PJ, Brown AM (1999) Cellular dysfunction of LQT5-minK mutants: abnormalities of IKs, IKr and trafficking in long QT syndrome. Hum Mol Genet 8:1499–1507

    Article  CAS  PubMed  Google Scholar 

  • Brugada J, Brugada P, Brugada R (2000) Sudden death (VI). The Brugada syndrome and right myocardiopathies as a cause of sudden death. The differences and similarities. Rev Esp Cardiol 53:275–285

    CAS  PubMed  Google Scholar 

  • Brugada J, Brugada R, Brugada P (2003a) Determinants of sudden cardiac death in individuals with the electrocardiographic pattern of Brugada syndrome and no previous cardiac arrest. Circulation 108:3092–3096

    Article  PubMed  Google Scholar 

  • Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 20:1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Brugada P, Brugada R, Mont L, Rivero M, Geelen P, Brugada J (2003b) Natural history of Brugada syndrome: the prognostic value of programmed electrical stimulation of the heart. J Cardiovasc Electrophysiol 14:455–457

    Article  PubMed  Google Scholar 

  • Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Wu YS, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109:30–35

    Article  CAS  PubMed  Google Scholar 

  • Cerrone M, Colombi B, Bloise R, Memmi M, Molcalvo C, Potenza D, Drago F, Napolitano C, Bradley DJ, Priori SG (2004) Clinical and molecular characterization of a large cohort of patients affected with catecholaminergic polymorphic ventricular tachycardia. Circulation 110:552 (suppl II) (abstr)

    Article  CAS  Google Scholar 

  • Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, Potenza D, Moya A, Borggrefe M, Breithardt G, Ortiz-Lopez R, Wang Z, Antzelevitch C, O’Brien RE, Schulze-Bahr E, Keating MT, Towbin JA, Wang Q (1998) Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392:293–296

    Article  CAS  PubMed  Google Scholar 

  • Compton SJ, Lux RL, Ramsey MR, Strelich KR, Sanguinetti MC, Green LS, Keating MT, Mason JW (1996) Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. Circulation 94:1018–1022

    CAS  PubMed  Google Scholar 

  • Coumel P, Fidelle J, Lucet V, Attuel P, Bouvrain Y (1978) Catecholaminergic-induced severe ventricular arrhythmias with Adams-Stokes syndrome in children: report of four cases. Br Heart J 40:28–37

    Google Scholar 

  • Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803

    Article  CAS  PubMed  Google Scholar 

  • De Rosa G, Delogu AB, Piastra M, Chiaretti A, Bloise R, Priori SG (2004) Catecholaminergic polymorphic ventricular tachycardia: successful emergency treatment with intravenous propranolol. Pediatr Emerg Care 20:175–177

    Article  PubMed  Google Scholar 

  • Delisle BP, Anderson CL, Balijepalli RC, Anson BD, Kamp TJ, January CT (2003) Thapsigargin selectively rescues the trafficking defective LQT2 channels G601S and F805C. J Biol Chem 278:35749–35754

    Article  CAS  PubMed  Google Scholar 

  • Eckardt L, Kirchhof P, Schulze-Bahr E, Rolf S, Ribbing M, Loh P, Bruns HJ, Witte A, Milberg P, Borggrefe M, Breithardt G, Wichter T, Haverkamp W (2002) Electrophysiologic investigation in Brugada syndrome; yield of programmed ventricular stimulation at two ventricular sites with up to three premature beats. Eur Heart J 23:1394–1401

    Article  CAS  PubMed  Google Scholar 

  • Eckardt L, Probst V, Smits JPP, Bahr ES, Wolpert C, Schimpf R, Wichter T, Boisseau P, Heinecke A, Breithardt G, Borggrefe M, LeMarec H, Bocker D, Wilde AAM (2005) Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. Circulation 111:257–263

    Article  PubMed  Google Scholar 

  • Freestone B, Lip GY (2004) Tedisamil: a new novel antiarrhythmic. Expert Opin Investig Drugs 13:151–160

    Article  CAS  PubMed  Google Scholar 

  • Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, Grossi S, Richiardi E, Borggrefe M (2003) Short QT Syndrome: a familial cause of sudden death. Circulation 108:965–970

    Article  PubMed  Google Scholar 

  • Gaita F, Giustetto C, Bianchi F, Schimpf R, Haissaguerre M, Calo L, Brugada R, Antzelevitch C, Borggrefe M, Wolpert C (2004) Short QT syndrome: pharmacological treatment. J Am Coll Cardiol 43:1494–1499

    Article  CAS  PubMed  Google Scholar 

  • Gasparini M, Priori SG, Mantica M, Coltorti F, Napolitano C, Galimberti P, Bloise R, Ceriotti C (2002) Programmed electrical stimulation in Brugada syndrome: how reproducible are the results? J Cardiovasc Electrophysiol 13:880–887

    Article  PubMed  Google Scholar 

  • Gouas L, Bellocq C, Berthet M, Potet F, Demolombe S, Forhan A, Lescasse R, Simon F, Balkau B, Denjoy I, Hainque B, Baro I, Guicheney P (2004) New KCNQ1 mutations leading to haploinsufficiency in a general population; defective trafficking of a KvLQT1 mutant. Cardiovasc Res 63:60–68

    Article  CAS  PubMed  Google Scholar 

  • Grant AO, Carboni MP, Neplioueva V, Starmer CF, Memmi M, Napolitano C, Priori S (2002) Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest 110:1201–1209

    Article  CAS  PubMed  Google Scholar 

  • Gussak I, Brugada P, Brugada J, Wright RS, Kopecky SL, Chaitman BR, Bjerregaard P (2000) Idiopathic short QT interval: a new clinical syndrome? Cardiology 94:99–102

    Article  CAS  PubMed  Google Scholar 

  • Hermida JS, Denjoy I, Clerc J, Extramiana F, Jarry G, Milliez P, Guicheney P, Di Fusco S, Rey JL, Cauchemez B, Leenhardt A (2004) Hydroquinidine therapy in Brugada syndrome. J Am Coll Cardiol 43:1853–1860

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Xiao B, Zhang L, Chen SR (2002) Enhanced basal activity of a cardiac Ca2+ release channel (ryanodine receptor) mutant associated with ventricular tachycardia and sudden death. Circ Res 91:218–225

    Article  CAS  PubMed  Google Scholar 

  • Kehl HG, Haverkamp W, Rellensmann G, Yelbuz TM, Krasemann T, Vogt J, Schulze-Bahr E (2004) Images in cardiovascular medicine. Life-threatening neonatal arrhythmia: successful treatment and confirmation of clinically suspected extreme long QT-syndrome-3. Circulation 109:e205–e206

    Article  PubMed  Google Scholar 

  • Lahat H, Pras E, Olender T, Avidan N, Ben Asher E, Man O, Levy-Nissenbaum E, Khoury A, Lorber A, Goldman B, Lancet D, Eldar M (2001) A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet 69:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Laitinen PJ, Brown KM, Piippo K, Swan H, Devaney JM, Brahmbhatt B, Donarum EA, Marino M, Tiso N, Viitasalo M, Toivonen L, Stephan DA, Kontula K (2001) Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 103:485–490

    CAS  PubMed  Google Scholar 

  • Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P (1995) Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 91:1512–1519

    CAS  PubMed  Google Scholar 

  • Lehnart SE, Wehrens XH, Marks AR (2004a) Calstabin deficiency, ryanodine receptors, and sudden cardiac death. Biochem Biophys Res Commun 322:1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Lehnart SE, Wehrens XHT, Laitinen PJ, Reiken SR, Deng SX, Cheng Z, Landry DW, Kontula K, Swan H, Marks AR (2004b) Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation 109:3208–3214

    Article  CAS  PubMed  Google Scholar 

  • Marks AR, Priori S, Memmi M, Kontula K, Laitinen PJ (2002) Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J Cell Physiol 190:1–6

    Article  CAS  PubMed  Google Scholar 

  • Matsuo K, Kurita T, Inagaki M, Kakishita M, Aihara N, Shimizu W, Taguchi A, Suyama K, Kamakura S, Shimomura K (1999) The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur Heart J 20:465–470

    Article  CAS  PubMed  Google Scholar 

  • Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogne K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421:634–639

    Article  CAS  PubMed  Google Scholar 

  • Moss AJ, Zareba W, Hall WJ, Schwartz PJ, Crampton RS, Benhorin J, Vincent GM, Locati EH, Priori SG, Napolitano C, Medina A, Zhang L, Robinson JL, Timothy K, Towbin JA, Andrews ML (2000) Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 101:616–623

    CAS  PubMed  Google Scholar 

  • Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15:186–189

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Cantu F, Brown AM, Schwartz PJ (1996) Differential response to Na+ channel blockade, beta-adrenergic stimulation, and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long-QT syndrome. Circ Res 78:1009–1015

    CAS  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Gasparini M, Pappone C, Della BP, Brignole M, Giordano U, Giovannini T, Menozzi C, Bloise R, Crotti L, Terreni L, Schwartz PJ (2000a) Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: A prospective evaluation of 52 families. Circulation 102:2509–2515

    CAS  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Giordano U, Collisani G, Memmi M (2000b) Brugada syndrome and sudden cardiac death in children. Lancet 355:808–809

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Schwartz PJ, Bloise R, Crotti L, Ronchetti E (2000c) The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation 102:945–947

    CAS  PubMed  Google Scholar 

  • Priori SG, Aliot E, Blomstrom-Lundqvist C, Bossaert L, Breithardt G, Brugada P, Camm AJ, Cappato R, Cobbe SM, Di Mario C, Maron BJ, McKenna WJ, Pedersen AK, Ravens U, Schwartz PJ, Truz-Gluza M, Vardas P, Wellens HJJ, Zipes DP (2001a) Task force on sudden cardiac death of the European Society of Cardiology. Eur Heart J 22:1374–1450

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V, Danieli GA (2001b) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103:196–200

    CAS  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, DeSimone L, Coltorti F, Bloise R, Keegan R, Cruz Filho FE, Vignati G, Benatar A, DeLogu A (2002a) Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 106:69–74

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Gasparini M, Pappone C, Bella PD, Giordano U, Bloise R, Giustetto C, De Nardis R, Grillo M, Ronchetti E, Faggiano G, Nastoli J (2002b) Natural history of Brugada syndrome. Insights for risk stratification and management. Circulation 105:1342–1347

    Article  PubMed  Google Scholar 

  • Priori SG, Rivolta I, Napolitano C (2003a) Genetics of long QT, Brugada and other Channellopathies. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology, 4th edn. Elsevier, Philadelphia, pp 462–470

    Google Scholar 

  • Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, Vicentini A, Spazzolini C, Nastoli J, Bottelli G, Folli R, Cappelletti D (2003b) Risk stratification in the long-QT syndrome. N Engl J Med 348:1866–1874

    Article  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E, Moncalvo C, Tulipani C, Veia A, Bottelli G, Nastoli J (2004) Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292:1341–1344

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A, Napolitano C, Anumonow J, di Barletta MR, Gudapakkam S, Bosi G, Stramba-Badiale M, Jalife J (2005) A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res.96:800–807

    Article  CAS  PubMed  Google Scholar 

  • Rajamani S, Anderson CL, Anson BD, January CT (2002) Pharmacological rescue of human K(+) channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block. Circulation 105:2830–2835

    Article  CAS  PubMed  Google Scholar 

  • Rivolta I, Giarda E, Nastoli J, Ronchetti E, Napolitano C, Priori SG (2004) In vitro characterization of the electrophysiological effects of mexiletine on SCN5A mutants predicts clinical response in LQT3 patients. Circulation 110(17):III–230, 26-10 (abstr)

    Google Scholar 

  • Sanguinetti MC, Jurkiewicz NK (1991) Delayed rectifier outward K+ current is composed of two currents in guinea pig atrial cells. Am J Physiol 260:H393–H399

    CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q, Sun Y, Rubie C, Hordt M, Towbin JA, Borggrefe M, Assmann G, Qu X, Somberg JC, Breithardt G, Oberti C, Funke H (1997) KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat Genet 17:267–268

    CAS  PubMed  Google Scholar 

  • Schwartz PJ (1985) Idiopathic long QT syndrome: progress and questions. Am Heart J 109:399–411

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantu F, Towbin JA, Keating MT, Hammoude H, Brown AM, Chen LS (1995) Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 92:3381–3386

    CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Dumaine R, Napolitano C, Antzelevitch C, Stramba-Badiale M, Richard TA, Berti MR, Bloise R (2000a) A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med 343:262–267

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Napolitano C (2000b) The long QT syndrome. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology from cell to bedside, 3rd edn. WB Saunders Co, Philadelphia, pp 597–615

    Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    Article  CAS  PubMed  Google Scholar 

  • Sumitomo N, Harada K, Nagashima M, Yasuda T, Nakamura Y, Aragaki Y, Saito A, Kurosaki K, Jouo K, Koujiro M, Konishi S, Matsuoka S, Oono T, Hayakawa S, Miura M, Ushinohama H, Shibata T, Niimura I (2003) Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death. Heart 89:66–70

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Torigoe K, Numata O, Yazaki S (2000) Infant case with a malignant form of Brugada syndrome. J Cardiovasc Electrophysiol 11:1277–1280

    Article  CAS  PubMed  Google Scholar 

  • Swan H, Piippo K, Viitasalo M, Heikkila P, Paavonen T, Kainulainen K, Kere J, Keto P, Kontula K, Toivonen L (1999) Arrhythmic disorder mapped to chromosome 1q42-q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. J Am Coll Cardiol 34:2035–2042

    Article  CAS  PubMed  Google Scholar 

  • Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, Bendahhou S, Kwiecinski H, Fidzianska A, Plaster N, Fu YH, Ptacek LJ, Tawil R (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 110:381–388

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T, Ashikaga K, Honda T, Arita M (2002) Prevention of ventricular fibrillation by cilostazol, an oral phosphodiesterase inhibitor, in a patient with Brugada syndrome. J Cardiovasc Electrophysiol 13:698–701

    Article  PubMed  Google Scholar 

  • Valdivia CR, Ackerman MJ, Tester DJ, Wada T, McCormack J, Ye B, Makielski JC (2002) A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine. Cardiovasc Res 55:279–289

    Article  CAS  PubMed  Google Scholar 

  • Valdivia CR, Tester DJ, Rok BA, Porter CB, Munger TM, Jahangir A, Makielski JC, Ackerman MJ (2004) A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs. Cardiovasc Res 62:53–62

    Article  CAS  PubMed  Google Scholar 

  • Viatchenko-Karpinski S, Terentyev D, Gyorke I, Terentyeva R, Volpe P, Priori SG, Napolitano C, Nori A, Williams SC, Gyorke S (2004) Abnormal calcium signaling and sudden cardiac death associated with mutation of calsequestrin. Circ Res 94:471–477

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23

    Article  PubMed  Google Scholar 

  • Wehrens XH, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, Sun J, Guatimosim S, Song LS, Rosemblit N, D’Armiento JM, Napolitano C, Memmi M, Priori SG, Lederer WJ, Marks AR (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829–840

    Article  CAS  PubMed  Google Scholar 

  • Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D, Coromilas J, Landry DW, Marks AR (2004) Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304:292–296

    Article  CAS  PubMed  Google Scholar 

  • Wilde AA, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P, Corrado D, Hauer RN, Kass RS, Nademanee K, Priori SG, Towbin JA (2002) Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation 106:2514–2519

    Article  PubMed  Google Scholar 

  • Windle JR, Geletka RC, Moss AJ, Zareba W, Atkins DL (2001) Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A:DeltaKPQ mutation. Ann Noninvasive Electrocardiol 6:153–158

    CAS  PubMed  Google Scholar 

  • Yan GX, Antzelevitch C (1999) Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 100:1660–1666

    CAS  PubMed  Google Scholar 

  • Yano M, Kobayashi S, Kohno M, Doi M, Tokuhisa T, Okuda S, Suetsugu M, Hisaoka T, Obayashi M, Ohkusa T, Kohno M, Matsuzaki M (2003) FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107:477–484

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Gong Q, Epstein ML, January CT (1998) HERG channel dysfunction in human long QT syndrome. Intracellular transport and functional defects. J Biol Chem 273:21061–21066

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Gong Q, January CT (1999) Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects. J Biol Chem 274:31123–31126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Priori, S., Napolitano, C., Cerrone, M. (2006). Experimental Therapy of Genetic Arrhythmias: Disease-Specific Pharmacology. In: Basis and Treatment of Cardiac Arrhythmias. Handbook of Experimental Pharmacology, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29715-4_10

Download citation

Publish with us

Policies and ethics