Skip to main content

Significance of Bacteria in the Rhizosphere

  • Chapter
Microbial Activity in the Rhizoshere

Part of the book series: Soil Biology ((SOILBIOL,volume 7))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbass Z, Okon Y (1993) Plant growth promotion by Azotobacter paspali in the rhizosphere. Soil Biol Biochem 25:1075–1083

    Google Scholar 

  2. Alexander M (1987) Introduction to soil microbiology. Krieger, Malabar, FL

    Google Scholar 

  3. Ashby AM, Watson MD, Loake GJ, Shaw CH (1988) Ti plasmid specified chemotaxis of Agrobacterium tumefaciens C58c1 toward vir-inducing phenolic-compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170:4181–4187

    CAS  PubMed  Google Scholar 

  4. Bagwell CE, Lovell CR (2000) Microdiversity of culturable diazotrophs from the rhizoplanes of the salt marsh grasses Spartina alterniflora and Juncus roemerianus. Microbial Ecol 39:128–136

    Article  CAS  Google Scholar 

  5. Baldani JI, Caruso L, Baldani VLD, Goi SR, Dobereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  6. Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397–2406

    Article  CAS  Google Scholar 

  7. Bauer WD, Teplitski M (2001) Can plants manipulate bacterial quorum sensing? Aust J Plant Physiol 28:913–921

    CAS  Google Scholar 

  8. Berge O, Heulin T, Balandreau J (1991) Diversity of diazotroph populations in the rhizosphere of maize (Zea mays L.) growing on different French soils. Biol Fert Soils 11:210–215

    Article  Google Scholar 

  9. Bergholz PW, Bagwell CE, Lovell CR (2001) Physiological diversity of rhizoplane diazotrophs of the saltmeadow cordgrass, Spartina patens: implications for host specific ecotypes. Microbial Ecol 42:466–473

    Article  CAS  Google Scholar 

  10. Berks BC, Ferguson SJ, Moir JWB, Richardson DJ (1995) Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochem Biophys Acta 1232:97–173

    PubMed  Google Scholar 

  11. Bever JD (2003) Soil community feedback and the coexistence of comptetitors: conceptual frameworks and empirical tests. New Phytol 157:465–473

    Article  Google Scholar 

  12. Bilal R, Rasul G, Mahmood K, Malik KA (1990) Nitrogenase activity and nitrogen-fixing bacteria associated with the roots of Atriplex spp. growing in saline soils of Pakistan. Biol Fert Soils 9:315–320

    Article  CAS  Google Scholar 

  13. Binns AN (2002) T-DNA of Agrobacterium tumefaciens: 25 years and counting. Trend Plant Sci 7:231–233

    CAS  Google Scholar 

  14. Boddey RM, Dobereiner J (1988) Nitrogen fixation associated with grasses and cereals: recent results and perspectives for future research. Plant Soil 108:53–65

    Google Scholar 

  15. Boddey RM, Victorial RL (1986) Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using 15 N labelled organic matter and fertilizer. Plant Soil 90:265–292

    Article  CAS  Google Scholar 

  16. Boddey RM, Urquiaga S, Reis V, Dobereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111–117

    Article  Google Scholar 

  17. Bolin B, Crutzen PJ, Vitouesk PM, Woodmansee RG, Goldberg ED, Cook RB (1983) Interactions in biogeochemical cycles. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions. Wiley, New York, pp 1–39

    Google Scholar 

  18. Bolton HJ, Fredrickson JK, Elliott LF (1993) Microbial ecology of the rhizosphere. In: Metting FBJ (ed) Soil microbial ecology. Marcel Dekker, New York, pp 27–63

    Google Scholar 

  19. Bonfante P (2003) Plants, mycorrhizal fungi and endobacteria: a dialog among cells and genomes. Biol Bull 204:215–220

    CAS  PubMed  Google Scholar 

  20. Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34:1709–1715

    Article  CAS  Google Scholar 

  21. Bonkowski M, Griffiths B, Scrimgeour C (2000) Substrate heterogeneity and microfauna in soil organic ‘hotspots’ as determinants of nitrogen capture and growth of ryegrass. Appl Soil Ecol 14:37–53

    Article  Google Scholar 

  22. Bowers JE, Parke JL (1993) Colonization of pea (Pisum sativum L.) taproots by Pseudomonas fluorescens: effect of soil temperature and bacterial motility. Soil Biol Biochem 25:1693–1701

    Article  Google Scholar 

  23. Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unraveling angiosperm genome evolution by phylogenic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  24. Brigham LA, Woo HH, Nicoll SM, Hawes MC (1995) Differential expression of proteins and mRNAs from border cells and root tips of pea. Plant Physiol 109:457–463

    CAS  PubMed  Google Scholar 

  25. Brigham LA, Woo HH, Wen F, Hawes MC (1998) Meristem-specific suppression of mitosis and a global switch in gene expression in the root cap of pea by endogenous signals. Plant Physiol 118:1223–1231

    Article  CAS  PubMed  Google Scholar 

  26. Bruehl GW (1987) Soilborne plant pathogens. Macmillan, New York

    Google Scholar 

  27. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  28. Carter JP, Hsiao YH, Spiro S, Richardson DJ (1995) Soil and sediment bacteria capable of aerobic nitrate respiration. Appl Env Microbiol 61:2852–2858

    CAS  PubMed  Google Scholar 

  29. Carter MR (2004) Researching structural complexity in agricultural soils. Soil Till Res 79:1–6

    Article  Google Scholar 

  30. Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11

    Article  CAS  PubMed  Google Scholar 

  31. Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129

    CAS  PubMed  Google Scholar 

  32. Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Bacillus strain. Can J Bot 69:507–511

    CAS  Google Scholar 

  33. Chatarpaul L, Chakravarty P, Subramaniam P (1989) Studies in tetrapartite symbioses I. Role of ecto- and endomycorrhizal fungi and Frankia on the growth performance of Alnus incana. Plant Soil 118:145–150

    Google Scholar 

  34. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  Google Scholar 

  35. Colebatch G, Trevaskis B, Udvardi M (2002) Symbiotic nitrogen fixation research in the postgenomics era. New Phytol 153:37–42

    CAS  Google Scholar 

  36. Contin M, Corcimaru S, De Nobili M, Brookes PC (2000) Temperature changes and the ATP concentration of the soil microbial biomass. Soil Biol Biochem 32:1219–1225

    Article  CAS  Google Scholar 

  37. Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. APS Press, St Paul

    Google Scholar 

  38. Cooper WE, Chilton SJP (1950) Studies on antibiotic soil organisms I. Actinomycetes antibiotic to Pythium arrhenomanes in sugarcane soils of Louisiana. Phytopathology 40:544–552

    Google Scholar 

  39. Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agr Ecosyst Environ 102:279–297

    Article  Google Scholar 

  40. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Nat Acad Sci 99:10494–10499

    CAS  PubMed  Google Scholar 

  41. Dalmastri C, Chiarini L, Cantale C, Bevivino A, Tabacchioni S (1999) Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microbial Ecol 38:273–284

    Article  Google Scholar 

  42. Dawson JO (1986) Actinorhizal plants: their use in forestry and agriculture. Outlook Agric 15:202–208

    Google Scholar 

  43. De La Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    PubMed  Google Scholar 

  44. De Nobili M, Contin M, Mondini C, Brookes PC (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33:1163–1170

    Google Scholar 

  45. Degens BP (1997) Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review. Aust J Soil Res 35:431–460

    Google Scholar 

  46. Delwiche CC (1970) The nitrogen cycle. Sci Am 223:137–146

    CAS  PubMed  Google Scholar 

  47. Dierberg FE, Brezonik PL (1983) Nitrogen and phosphorus mass balances in natural and sewage-enriched cypress domes. J Appl Ecol 20:323–327

    CAS  Google Scholar 

  48. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  49. Dobereiner J, Pedrosa FA (1987) Nitrogen fixing bacteria in nonleguminous Plants. Science Tech Publishers, Madison

    Google Scholar 

  50. Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  CAS  PubMed  Google Scholar 

  51. Elmer WH (1995) Association between Mn-reducing root bacteria and NaCl applications in suppression of Fusarium crown and root rot of asparagus. Phytopathology 85:1461–1467

    Google Scholar 

  52. Firestone MK (1982) Biological denitrification. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, Madison, WI, pp 289–326

    Google Scholar 

  53. Fischer K, Hahn D, Hönerlage W, Zeyer J (1997) Effect of passage through the gut of the earthworm Lumbricus terrestris L. on Bacillus megaterium studied by whole cell hybridization. Soil Biol Biochem 29:1149–1152

    CAS  Google Scholar 

  54. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher-plants. Nucleic Acids Res 20:3639–3644

    CAS  PubMed  Google Scholar 

  55. Fulchier M, Fioni L (1994) Azospirillum inoculation on maize (Zea mays): effect on yield in a field experiment in central Argentina. Soil Biol Biochem 26:921–923

    Google Scholar 

  56. Galleguillos C, Aguirre C, Barea JM, Azcón R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63

    Article  CAS  PubMed  Google Scholar 

  57. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  58. Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann Rev Phytopathol 42:243–270

    CAS  Google Scholar 

  59. Gastine A, Scherer-Lorenzen M, Leadley PW (2003) No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl Soil Ecol 24:101–111

    Article  Google Scholar 

  60. Ghai SK, Thomas GV (1989) Occurrence of Azospirillum spp. in coconut-based farming systsems. Plant Soil 114:235–241

    Article  Google Scholar 

  61. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  62. Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol Agric Hort 12:185–193

    Google Scholar 

  63. Goldstein AH, Braverman K, Osorio N (1999) Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol Ecol 30:295–300

    CAS  PubMed  Google Scholar 

  64. Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  65. Graham JH (1988) Interactions of mycorrhizal fungi with soilborne plant pathogens and other organisms: an introduction. Phytopathology 78:365–366

    Google Scholar 

  66. Griffiths B, Robinson D (1992) Root-induced nitrogen mineralization – a nitrogen-balance model. Plant Soil 139:253–263

    Article  CAS  Google Scholar 

  67. Griffiths BS (1990) A comparison of microbial-feeding nematodes and protozoa in the rhizosphere of different plants. Biol Fert Soils 9:83–88

    Article  Google Scholar 

  68. Gualtieri B, Bisseling T (2000) The evolution of nodulation. Plant Mol Biol 42:181–194

    Article  CAS  PubMed  Google Scholar 

  69. Haahtela K, Kari K (1986) The role of root-associated Klebsiella pneumoniae in the nitrogen nutrition of Poa pratensis and Triticum aestivum as estimated by the method of 15N isotope dilution. Plant Soil 90:245–254

    Article  Google Scholar 

  70. Haahtela K, Korhonen TK (1985) In vitro adhesion of N2-fixing enteric bacteria to roots of grasses and cereals. Appl Environ Microbiol 49:1186–1190

    PubMed  Google Scholar 

  71. Hall R (1974) Pathogenism and parasitism as concepts of symbiotic relationships. Phytopathology 64:576–577

    Google Scholar 

  72. Hamer L, Dezwaan TM, Montenegro-Chamorro MV, Frank SA, Hamer JE (2001) Recent advances in large-scale transposon mutagenesis. Curr Opin Chem Biol 5:67–73

    Article  CAS  PubMed  Google Scholar 

  73. Hawes MC, Smith LY (1989) Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea-plants. J Bacteriol 171:5668–5671

    CAS  PubMed  Google Scholar 

  74. Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Y (1998) Function of root border cells in plant health: pioneers in the rhizosphere. Ann Rev Phytopathol 36:311–327

    CAS  Google Scholar 

  75. Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133

    Article  CAS  PubMed  Google Scholar 

  76. Hawes MC, Bengough G, Cassab G, Ponce G (2003) Root caps and rhizosphere. J Plant Growth Reg 21:352–367

    Google Scholar 

  77. Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891

    Google Scholar 

  78. Hetrick BAD, Wilson GT, Kitt DG, Schwab AP (1988) Effects of soil microorganisms on mycorrhizal contribution to growth of big bluestem grass in non-sterile soil. Soil Biol Biochem 20:501–507

    Article  Google Scholar 

  79. Heulin T, Berge O, Mavingui P, Gouzou L, Hebbar KP, Balandreau J (1994) Bacillus polymyxa and Rahnella aquatilis the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol 30:35–42

    Google Scholar 

  80. Hill WA, Bacon-Hill P, Crossman SM, Stevens C (1982) Characterization of N2-fixing bacteria associated with sweet potato roots. Can J Bot 29:860–862

    Google Scholar 

  81. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary vector strategy based on separation of the vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  82. Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Suh JS, Kim KY (2003) 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr Microbiol 47:87–92

    CAS  PubMed  Google Scholar 

  83. Iijima M, Barlow PW, Bengough AG (2003) Root cap structure and cell production rates of maize (Zea mays) roots in compacted sand. New Phytol 160:127–134

    Article  Google Scholar 

  84. Jacobsen BJ, Backman A (1993) Biological and cultural plant disease controls: alternatives and supplements to chemicals in IPM systems. Plant Dis 77:311–315

    Google Scholar 

  85. Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and plant growth: non-nutritional effects and interactions with mycorrhizas. Biol Fert Soils 20:263–269

    Article  Google Scholar 

  86. Johansson JF, Paul LR, Finaly RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    CAS  Google Scholar 

  87. Johnson D, Booth RE, Whiteley AS, Bailey MJ, Read DJ, Grime JP, Leake JR (2003) Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur J Soil Sci 54:671–678

    Google Scholar 

  88. Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  89. Jones DL, Darrah PR (1994) Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163:1–12

    CAS  Google Scholar 

  90. Jones DL, Darrah PR (1996) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. III. Characteristics of sugar influx and efflux. Plant Soil 178:153–160

    Article  CAS  Google Scholar 

  91. Kennedy IR, Tchan YT (1992) Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant Soil 141:93–118

    Article  CAS  Google Scholar 

  92. Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Ann Rev Microbiol 56:211–236

    CAS  Google Scholar 

  93. Kerr A (1969) Transfer of virulence between isolates of Agrobacterium tumefaciens. Nature 223:1175–1176

    Google Scholar 

  94. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  95. Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting FBJ (eds) Soil microbial ecology. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  96. Knox OGG, Killham K, Mullins CE, Wilson MJ (2003) Nematode-enhanced microbial colonization of the wheat rhizosphere. FEMS Microbiol Lett 225:227–233

    Article  CAS  PubMed  Google Scholar 

  97. Kuikman PJ, Van Veen JA (1989) The impact of protozoa on the availability of bacterial nitrogen to plants. Biol Fert Soils 8:13–18

    Article  Google Scholar 

  98. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  99. Larson RI, Neal JLJ (1978) Selective colonization of the rhizosphere of wheat by nitrogen-fixing bacteria. Ecologic Bull 26:331–342

    Google Scholar 

  100. Leeman M, den Ouden FM, van Pelt JA, Dirkx H, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    CAS  Google Scholar 

  101. Lewin B (1990) Genes IV. Oxford University Press, Oxford

    Google Scholar 

  102. Lima E, Boddey RM, Dobereiner J (1987) Quantification of biological nitrogen fixation associated with sugarcane using a 15N aided nitrogen balance. Soil Biol Biochem 19:165–170

    Article  CAS  Google Scholar 

  103. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  104. Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. American Society of Agronomy, Madison, WI, pp 45–70

    Google Scholar 

  105. Lockwood JL (1988) Evolution of concepts associated with soilborne plant pathogens. Ann Rev Phytopathol 26:93–121

    Google Scholar 

  106. Lodwig E, Poole P (2003) Metabolism of Rhizobium bacteroids. Crit Rev Plant Sci 22:37–78

    CAS  Google Scholar 

  107. Lynch JM (1983) Soil biotechnology. Blackwell Scientific, Oxford

    Google Scholar 

  108. Lynch MR (1995) The rhizosphere. Wiley, Chichester

    Google Scholar 

  109. Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  110. Martinez-Toledo MV, Gonzalez-Lopez J, de la Rubia T, Moreno J, Ramos-Cormenzana A (1988) Effect of inoculation with Azotobacter chroococcum on nitrogenase activity of Zea mays roots grown in agricultural soils under aseptic and non-sterile conditions. Biol Fert Soils 6:170–173

    Article  Google Scholar 

  111. Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth promoting bacterium, Psuedomonas putida. Soil Biol Biochem 18:191–196

    Google Scholar 

  112. Michiels K, Venderleyden J, Van Gool A (1989) Azospirillium-plant root associations: a review. Biol Fert Soils 8:356–368

    Article  Google Scholar 

  113. Moghimi A, Tate ME (1978) Does 2-ketogluconate chelate calcium in the pH range 2.4 to 6.4? Soil Biol Biochem 10:289–292

    CAS  Google Scholar 

  114. Moghimi A, Tate ME, Oades JM (1978) Characterization of rhizosphere products, especially 2-ketogluconic acid. Soil Biol Biochem 10:283–287

    CAS  Google Scholar 

  115. Moore PD (2003) Ecology – roots of diversity. Nature 424:26–27

    Article  CAS  PubMed  Google Scholar 

  116. Murphy PJ, Wexler W, Grzemski W, Rao JP, Gordon D (1995) Rhizopines – their role in symbiosis and competition. Soil Biol Biochem 27:525–529

    Article  CAS  Google Scholar 

  117. Myrold DD, Huss-Danell K (2003) Alder and lupine enhance nitrogen cycling in a degraded forest soil in Northern Sweden. Plant Soil 254:47–56

    Article  CAS  Google Scholar 

  118. Nehl DB, Allen SJ, Brown JF (1997) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5:1–20

    Article  Google Scholar 

  119. Nelson AD, Barber LE, Tjepkema J, Russell SA, Powelson R, Evans HJ, Seidler RJ (1976) Nitrogen fixation associated with grasses in Oregon. Can J Bot 22:523–530

    CAS  Google Scholar 

  120. Newman EI (1978) Root microorganisms: their significance in the ecosystem. Biol Rev 53:511–54

    CAS  Google Scholar 

  121. Newman EI, Campbell R, Rovira AD (1977) Experimental alteration of soil microbial populations for studying effects on higher plant interactions. New Phytol 79:107–118

    Google Scholar 

  122. Newton JA, Fray RG (2004) Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol 6:213–224

    Article  CAS  PubMed  Google Scholar 

  123. Oger P, Mansouri H, Dessaux Y (2000) Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 9:881–890

    Article  CAS  PubMed  Google Scholar 

  124. Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90:3–16

    Article  CAS  Google Scholar 

  125. Packer A, Clay K (2004) Development of negative feedback during successive growth cycles of black cherry. P Roy Soc Lond B Bio 271:317–324

    Google Scholar 

  126. Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Article  CAS  Google Scholar 

  127. Patrick WH (1982) Nitrogen transformations in submerged soils. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, Madison, WI, pp 449–465

    Google Scholar 

  128. Patriquin DG, Keddy C (1978) Nitrogenase activity (acetylene reduction) in a Nova Scotian salt marsh: its association with angiosperms and the influence of some edaphic factors. Aquat Bot 4:227–244

    CAS  Google Scholar 

  129. Paula MA, Urquiaga S, Siquiera JO, Dobereiner J (1992) Synergistic effects of vesicular-arbuscular mycorrhizal fungi and diazotrophic bacteria on nutrition and growth of sweet potato (Ipomoea batatas). Biol Fert Soils 14:61–66

    Article  CAS  Google Scholar 

  130. Payne WJ (1973) Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev 37:409–452

    CAS  PubMed  Google Scholar 

  131. Pedersen WL, Chakrabarty K, Klucas RV, Vidaver AK (1978) Nitrogen fixation (acetylene reduction) associated with roots of winter wheat and sorghum in Nebraska. Appl Environ Microbiol 35:129–135

    CAS  PubMed  Google Scholar 

  132. Peoples MB, Craswell ET (1992) Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture. Plant Soil 141:13–39

    Article  CAS  Google Scholar 

  133. Piccini D, Azcon R (1987) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayobvar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant Soil 101:45–50

    CAS  Google Scholar 

  134. Piceno YM, Lovell CR (2000) Stability in natural bacterial communities: I. Nutrient addition effects on rhizosphere diazotroph assemblage composition. Microbial Ecol 39:32–40

    CAS  Google Scholar 

  135. Pierson LS, Wood DW, Pierson EA (1998) Homoserine lactone-mediated gene regulation in plant-associated bacteria. Ann Rev Phytopathol 36:207–225

    CAS  Google Scholar 

  136. Pieterse CMJ, van-Wees SCM, Ton J, van-Pelt JA, van-Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544

    Article  CAS  Google Scholar 

  137. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. BioSystems 6:153–164

    Article  CAS  PubMed  Google Scholar 

  138. Qureshi JA, Zafar Y, Malik KA (1988) Klebsiella sp. NIAB-I: a new diazotroph, associated with roots of Kallar grass from saline sodic soils. Plant Soil 110:219–224

    Article  CAS  Google Scholar 

  139. Rai AN, Soderback E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481

    Article  CAS  Google Scholar 

  140. Rajaniemi TK, Allison VJ, Goldberg DE (2003) Root competition can cause a decline in diversity with increased productivity. J Ecol 91:407–416

    Article  Google Scholar 

  141. Raju PN, Evans HJ, Seidler RJ (1972) An asymbiotic nitrogen-fixing bacterium from the root environment of corn. Proc Nat Acad Sci 69:3474–3478

    CAS  Google Scholar 

  142. Reinhold-Hurek B, Hurek T (2000) Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Sys Evol Microbiol 50:649–659

    CAS  Google Scholar 

  143. Reis VJ, dos Reis FBJ, Quesada DM, de Oliveira OCA, Alves BJR, Urquiaga S, Boddey RM (2001) Bilogical nitrogen fixation associated with tropical pasture grasses. Aust J Plant Physiol 28:837–844

    Google Scholar 

  144. Retallack A (1997) Early forest soils and their role in Devonian global change. Science 276:583–585

    Article  CAS  PubMed  Google Scholar 

  145. Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  146. Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    Article  CAS  PubMed  Google Scholar 

  147. Rillig MC, Steinberg PD (2002) Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem 34:1371–1374

    Article  CAS  Google Scholar 

  148. Rodger S, Bengough AG, Griffiths BS, Stubbs V, Young IM (2003) Does the presence of detached root border cells of Zea mays alter the activity of the pathogenic nematode Meloidogyne incognita? Phytopathology 93:1111–1114

    Google Scholar 

  149. Rojas NS, Perry DA, Li CY, Ganio LM (2002) Interactions among soil biology, nutrition, and performance of actinorhizal plant species in the H.J. Andrews Experimental Forest of Oregon. Appl Soil Ecol 19:13–26

    Article  Google Scholar 

  150. Ronn R, McCaig AE, Griffiths BS, Prosser JI (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105

    Article  CAS  PubMed  Google Scholar 

  151. Rosswall T (1976) The internal nitrogen cycle between micro-organisms, vegetation and soil. In: Svensson BH, Soderlund R (eds) Nitrogen, phosphorus and sulphu – global cycles. SCOPE report No 7. Ecol Bull 22:157–167

    Google Scholar 

  152. Rosswall T (1983) The nitrogen cycle. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions. Wiley, Chichester, pp 46–50

    Google Scholar 

  153. Ruppel S (1988) Isolation of diazotrophic bacteria from the endorhizosphere and rhizoplane of winter wheat in a temperate region. Zbl Mikrobiol 143:621–629

    Google Scholar 

  154. Sanchez L, Weidmann S, Brechenmacher L, Batoux M, van Tuinen D, Lemanceau P, Gianinazzi S, Gianinazzi-Pearson V (2004) Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. New Phytol 161:855–863

    Article  CAS  Google Scholar 

  155. Sarig S, Okon Y (1992) Effect of Azospirillum brasilense inoculation in growth dynamics and hydraulic conductivity of Sorghum bicolor roots. J Plant Nutr 15:805–819

    Google Scholar 

  156. Savka MA, Dessaux Y, Oger P, Rossbach S (2002) Engineering bacterial competitiveness and persistence in the phytosphere. Mol Plant Microbe Interact 15:866–874

    CAS  PubMed  Google Scholar 

  157. Scheu S (2002) The soil food web: structure and perspectives. Eur J Soil Biol 38:11–20

    Article  Google Scholar 

  158. Schwencke J, Carú M (2001) Advances in actinorhizal symbiosis: host plant-Frankia interactions, biology, and applications in arid land reclamation. A review. Arid Land Res Manag 15:285–327

    CAS  Google Scholar 

  159. Simms EL, Bever JD (1998) Evolutionary dynamics of rhizopine within spatially structured rhizobium populations. P Roy Soc Lond B Bio 265:1713–1719

    Google Scholar 

  160. Simms EL, Taylor DL (2002) Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Integ Compar Biol 42:369–380

    Google Scholar 

  161. Simon HM, Dodsworth JA, Goodman RM (2000) Crenarchaeota colonize terrestrial plant roots. Environ Microbiol 2:495–505

    Article  CAS  PubMed  Google Scholar 

  162. Singh CS (1992) Mass inoculum production of vesicular-arbuscular (VA) mycorrhizae: I. Selection of host in the presence of Azospirillum brasilense. Zbl Mikrobiol 147:447–453

    Google Scholar 

  163. Smith DC, Douglas AE (1987) The biology of symbiosis. Edward Arnold, London

    Google Scholar 

  164. Smith KA (1990) Anaerobic zones and denitrification in soil: modelling and measurement. In: Revsbech NR, Sorensen J (eds) Denitrification in soil and sediment. Plenum Press, New York, pp 229–244

    Google Scholar 

  165. Smith MS, Teidje JM (1979) The effect of roots on soil denitrification. J Am Soil Sci Soc 43:951–955

    CAS  Google Scholar 

  166. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  167. Stefanson RC (1972) Soil denitrification in sealed soil-plant systems I. Effect of plants, soil water content and soil organic matter content. Plant Soil 37:113–127

    CAS  Google Scholar 

  168. Stephens PM, Davoren CW, Ryder MH, Doube BM (1993) Influence of the lumbricid earthworm Aporrectodea trapezoides on the colonization of wheat roots by Pseudomonas corrugata strain 2140r in soil. Soil Biol Biochem 25:1719–1724

    Google Scholar 

  169. Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Till Res 72:107–123

    Google Scholar 

  170. Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  171. Subba Rao NS (1983) Nitrogen-fixing bacteria associated with plantation and orchard plants. Can J Microbiol 29:863–866

    Google Scholar 

  172. Subba Rao NSS, Tilak KVBR, Singh CS (1985) Synergistic effect of vesicular-arbuscular mycorrhizas and Azospirillum brasilense on the growth of barley in pots. Biol Fert Soils 17:119–121

    Google Scholar 

  173. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivan-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  Google Scholar 

  174. Tian CJ, He XY, Zhong Y, Chen JK (2002) Effects of VA mycorrhizae and Frankia dual inoculation on growth and nitrogen fixation of Hippophae tibetana. For Ecol Manag 170:307–312

    Google Scholar 

  175. Tisdall JM (1991) Fungal hyphae and structural stability of soil. Aust J Soil Res 29:729–743

    Article  Google Scholar 

  176. Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities – a review. J Ind Microbiol 17:170–178

    CAS  Google Scholar 

  177. van Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol 157:525–537

    Google Scholar 

  178. Vázquez M, Barea J, Azcón R (2001) Impact of soil nitrogen concentration on Glomus spp.-Sinorhizobium interactions as affecting growth, nitrate reductase activity and protein content of Medicago sativa. Biol Fert Soils 34:57–63

    Google Scholar 

  179. Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci 89:7124–7128

    CAS  PubMed  Google Scholar 

  180. Wang H, Li J, Bostock RM, Gilchrist DG (1996) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    CAS  PubMed  Google Scholar 

  181. Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Google Scholar 

  182. Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann Rev Phytopathol 26:379–407

    Google Scholar 

  183. Whiting PH, Midgley M, Dawes EA (1976) The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa. J Gen Microbiol 92:304–310

    CAS  PubMed  Google Scholar 

  184. Will ME, Sylvia DM (1990) Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl Environ Microbiol 56:2073–2079

    PubMed  Google Scholar 

  185. Woldendorp JP (1962) The quantitative influence of the rhizosphere on denitrification. Plant Soil 17:267–270

    Article  CAS  Google Scholar 

  186. Woldendorp JP (1963) The influence of living plants on denitrification. Med Land Wagen 63:1–100

    Google Scholar 

  187. Wolter C, Scheu S (1999) Changes in bacterial numbers and hyphal lengths during the gut passage through Lumbricus terrestris (Lumbricidae, Oligochaeta). Pedobiologia 43:891–900

    Google Scholar 

  188. Wood CC, Islam N, Ritchie RJ, Kennedy IR (2001) A simplified model for assessing critical parameters during associative 15N2 fixation between Azospirillum and wheat. Aust J Plant Physiol 28:969–974

    Google Scholar 

  189. Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  190. Zimmer W, Bothe H (1988) The phytohormonal interactions between Azospirillum and wheat. Plant Soil 110:239–247

    Article  CAS  Google Scholar 

  191. Zuberer DA, Silver WS (1978) Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl Environ Microbiol 35:567–575

    CAS  PubMed  Google Scholar 

  192. Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Nehl, D.B., Knox, O.G.G. (2006). Significance of Bacteria in the Rhizosphere. In: Mukerji, K.G., Manoharachary, C., Singh, J. (eds) Microbial Activity in the Rhizoshere. Soil Biology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29420-1_6

Download citation

Publish with us

Policies and ethics