Skip to main content

Zusammenfassung

»Für die Entstehung der Tumorzelle sind offenbar Vorgänge an bestimmten Strukturen im Zellplasma und Kern entscheidend« (Domagk 1956). Trotz seines Alters hat dieser Satz auch heute noch uneingeschränkte Aktualität. Die Eigenschaften von Zellen und Geweben werden im Wesentlichen durch das Zusammenspiel der in diesen Zellen und Geweben vorliegenden Proteine bestimmt. Unterschiede in der Zusammensetzung und im Zustand dieser Proteine zwischen Tumorzellen und den entsprechenden normalen Zellen sind nach unserer heutigen Vorstellung für Tumorentstehung und -progression entscheidend verantwortlich. Diese Parameter werden durch genetische und epigenetische Mechanismen gesteuert. Die Aufklärung solcher Mechanismen — keineswegs beschränkt auf Fragen der Krebsforschung — ist Gegenstand der relativ neuen Forschungsgebiete der funktionellen Genomik und Proteomik.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Agami R (2002) RNAi and related mechanisms and their potential use for therapy. Curr Opin Chem Bio 6: 829–834

    Article  CAS  Google Scholar 

  • Alizadeh AA, Ross DT, Perou CM, van de Rijn M (2001) Towards a novel classification of human malignancies based on gene expression patterns. J Pathol 195:41–52

    Article  PubMed  CAS  Google Scholar 

  • Beer DG, Kardia SL, Huang CC et al (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8:816–824

    PubMed  CAS  Google Scholar 

  • Bennetzen J (2002) Opening the door to comparative plant biology. Science 296:60–63

    Article  PubMed  Google Scholar 

  • Boguski MS, McIntosh MW (2003) Biomedical informatics for proteomics. Nature 422:233–237

    Article  PubMed  CAS  Google Scholar 

  • Butenand A, Dannenberg H (1956) Die Biochemie der Geschwülste. In: Büchner, F, Letterer, E, Roulet, F (Hrsg) Handbuch der allgemeinen Pathologie, Band 6, Teil 3, S 107–241. Springer, Berlin Heidelberg

    Google Scholar 

  • Butte A (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1:951–960

    Article  PubMed  CAS  Google Scholar 

  • Domagk G (1956) Die experimentelle Geschwulstforschung. In: Büchner, F, Letterer E, Roulet F (Hrsg) Handbuch der allgemeinen Pathologie, Band 6, Teil 3, S 242–367. Springer, Berlin Heidelberg

    Google Scholar 

  • Elkahloun AG, Gaudet J, Robinson GS, Sgroi DC (2002) In situ gene expression analysis of cancer using laser capture microdissection, microarrays and real time quantitative PCR. Cancer Biol Ther 1:354–358

    PubMed  CAS  Google Scholar 

  • Erickson AC, Barcellos-Hoff MH (2003) The not-so innocent bystander: the microenvironment as a therapeutic target in cancer. Expert Opin Ther Targets 7:71–88

    Article  PubMed  CAS  Google Scholar 

  • Evans SJ, Datson NA, Kabbaj M et al (2002) Evaluation of Affymetrix gene chip sensitivity in rat hippocampal tissue using SAGE analysis. Serial analysis of gene expression. Eur J Neurosci 16:409–413

    Article  PubMed  Google Scholar 

  • Fodor SP, Read JL, Pirrung MC et al (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773

    PubMed  CAS  Google Scholar 

  • Futcher B, Latter GI, Monardo P et al (1999) A sampling of the yeast proteome. Mol Cell Biol 19: 7357–7368

    PubMed  CAS  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T et al (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1:323–33

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Hanash S (2003) Disease proteomics. Nature 422:226–232

    Article  PubMed  CAS  Google Scholar 

  • Ishi M, Hashimoto S, Tsutsumi S et al (2000) Direct comparison of GeneChip and SAGE on the quantitative accuracy in transcript profiling analysis. Genomics 68:136–143

    Google Scholar 

  • Kashani-Sabet M (2002) Ribozyme therapeutics. J Investig Dermatol Symp Proc 7:76–78

    Article  PubMed  CAS  Google Scholar 

  • Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679

    Article  PubMed  CAS  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    PubMed  CAS  Google Scholar 

  • Knezevic V, Leethanakul C, Bichsel VE et al (2001) Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 1:1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Kojima T, Asami S, Chin M et al (2002) Detection of chimeric genes in Ewing’s sarcoma and its clinical applications. Biol Pharm Bull 25:991–994

    Article  PubMed  CAS  Google Scholar 

  • Kusnezow W, Jacob A, Walijew A et al (2003) Antibody microarrays: An evaluation of production parameters. Proteomics 3:254–264

    Article  PubMed  CAS  Google Scholar 

  • Liang DC, Shih LY, Yang CP et al (2002) Multiplex RT-PCR assay for the detection of major fusion transcripts in Taiwanese children with B-lineage acute lymphoblastic leukemia. Med Pediatr Oncol 39:12–17

    Article  PubMed  Google Scholar 

  • Liebig B, Brabletz T, Staege MS et al (2005) Forced expression of DeltaN-TCF-1B in colon cancer derived cell lines is accompanied by the induction of CEACAM5/6 and mesothelin. Cancer Lett 223:159–167

    Article  PubMed  CAS  Google Scholar 

  • MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32(Suppl):526–532

    PubMed  CAS  Google Scholar 

  • Menssen A, Hermeking H (2002) Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA 99:6274–6279

    Article  PubMed  CAS  Google Scholar 

  • Morris EC, Bendle GM, Stauss HJ (2003) Prospects for immunotherapy of malignant disease. Clin Exp Immunol 131:1–7

    Article  PubMed  CAS  Google Scholar 

  • Milenic DE (2002) Monoclonal antibody-based therapy strategies: providing options for the cancer patient. Curr Pharm Des 8:1749–1764

    Article  PubMed  CAS  Google Scholar 

  • Mullen JT, Tanabe KK (2002) Viral oncolysis. The Oncologist 7:106–119

    Article  PubMed  CAS  Google Scholar 

  • Nishimori H, Sasaki Y, Yoshida K et al (2002) The Id2 gene is a novel target of transcriptional activation by EWS-ETS fusion proteins in Ewing family tumors. Oncogene 21:8302–8309

    Article  PubMed  CAS  Google Scholar 

  • Oberbauer R (1997) Not nonsense but antisense — applications of antisense oligonucleotides in different fields of medicine. Wien Klin Wochenschr 109:40–46

    PubMed  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    PubMed  CAS  Google Scholar 

  • Ohali A, Avigad S, Zaizov R et al (2004) Prediction of high risk Ewing’s sarcoma by gene expression profiling. Oncogene 23:8997–9006

    Article  PubMed  CAS  Google Scholar 

  • Orr MS, Scherf U (2002) Large-scale gene expression analysis in molecular target discovery. Leukemia 16: 473–477

    Article  PubMed  CAS  Google Scholar 

  • Peter M, Gilbert E, Delattre O (2001) A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest 81:905–912

    PubMed  CAS  Google Scholar 

  • Pindolia VK, Zarowitz BJ (2002) Imatinib mesylate, the first molecularly targeted gene suppressor. Pharmacotherapy 22:1249–1265

    PubMed  CAS  Google Scholar 

  • Sadovnikova E, Parovichnikova EN, Savchenko VG et al (2002) the CD68 protein as a potential target for leukaemia-reactive CTL. Leukemia 16:2019–2026

    Article  PubMed  CAS  Google Scholar 

  • Sawyers CL (2002) Rational therapeutic intervention in cancer: kinases as drug targets. Curr Opin Genet Dev 12:111–115

    Article  PubMed  CAS  Google Scholar 

  • Schäfer KL, Wai DH, Poremba C et al (2002) Characterization of the malignant melanoma of soft-parts cell line GG-62 by expression analysis using DNA microarrays. Virchows Arch 440:476–484

    Google Scholar 

  • Schena M, Davis RW (1999) Genes, genomes, and chips. In: Schena, M. (ed) DNA microarrays. A practical approach, pp.1–16. Oxford University Press, Oxford

    Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    PubMed  CAS  Google Scholar 

  • Schuhmacher M, Kohlhuber F, Holzel M et al (2001) The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res 29:397–406

    Article  PubMed  CAS  Google Scholar 

  • Shiio Y, Donohoe S, Yi EC et al (2002) Quantitative proteomic analysis of Myc oncoprotein function. EMBO J 21:5088–5096

    Article  PubMed  CAS  Google Scholar 

  • Shtutman M, Zhurinsky J, Oren M et al (2002) PML is a target gene of beta-catenin and plakoglobin, and coactivates beta-catenin-mediated transcription. Cancer Res 62:5947–5954

    PubMed  CAS  Google Scholar 

  • Staege MS, Burdach S (2003) Gegenwart und Zukunft der molekularen Therapie. Vom Genom zum Antigenom. Kinder-und Jugendmedizin 3:216–220

    Google Scholar 

  • Staege MS, Hattenhorst UE, Neumann I et al (2003) DNA-Microarrays as tools for the identification of tumor specific gene expression profiles: Applications in tumor biology, diagnosis and therapy. Klin Pädiatr 215: 135–138

    PubMed  CAS  Google Scholar 

  • Staege MS, Hutter C, Neumann I et al (2004) DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 64:8213–8221

    Article  PubMed  CAS  Google Scholar 

  • Storz G (2002) An expanding universe of noncoding RNAs. Science 296:1260–1263

    Article  PubMed  CAS  Google Scholar 

  • Theriault TP, Winder SC, Gamble RC (1999) Application of ink-jet printing technology to the manufacture of molecular arrays. In: Schena M (ed) DNA microarrays. A practical approach, pp 101–120. Oxford University Press, Oxford

    Google Scholar 

  • Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99:6567–6572

    Article  PubMed  CAS  Google Scholar 

  • van der Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    PubMed  Google Scholar 

  • Wai DH, Schäfer KL, Schramm A et al (2002) Expression analysis of pediatric solid tumor cell lines using oligonucleotide microarrays. Int J Oncol 20:441–451

    PubMed  CAS  Google Scholar 

  • Watson JD, Oster SK, Shago M et al (2002) Identifying genes regulated in a Myc-dependent manner. J Biol Chem 277:36921–36930

    Article  PubMed  CAS  Google Scholar 

  • Weinschenk T, Gouttefangeas C, Schirle M et al (2002) Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 62:5818–5827

    PubMed  CAS  Google Scholar 

  • Yagyu R, Hamamoto R, Furukawa Y, Okabe H, Yamamura T, Nakamura Y (2002) Isolation and characterization of a novel human gene, VANGL1, as a therapeutic target for hepatocellular carcinoma. Int J Oncol 20:1173–1178

    PubMed  CAS  Google Scholar 

  • Ye SQ, Usher DC, Zhang LQ (2002) Gene expression profiling of human diseases by serial analysis of gene expression. J Biomed Sci 9:384–394

    Article  PubMed  CAS  Google Scholar 

  • Yeoh EJ, Ross ME, Shurtleff SA et al (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Burdach, S., Staege, M.S. (2006). Funktionelle Genomik und Proteomik. In: Gadner, H., Gaedicke, G., Niemeyer, C., Ritter, J. (eds) Pädiatrische Hämatologie und Onkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29036-2_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-29036-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-03702-6

  • Online ISBN: 978-3-540-29036-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics