Skip to main content

Part of the book series: The Mycota ((MYCOTA,volume 1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Qadota H, Hirata A, Ohya Y (2003) Lack of GTP-bound Rho1p in secretory vesicles of Saccharomyces cerevisiae. J Cell Biol 162:85–97

    PubMed  CAS  Google Scholar 

  • Abeijon C, Chen LY (1998) The role of glucosidase I (Cwh41p) in the biosynthesis of cell wall beta-1,6-glucan is indirect. Mol Biol Cell 9:2729–2738

    PubMed  CAS  Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    PubMed  CAS  Google Scholar 

  • Alex LA, Borkovich KA, Simon MI (1996) Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc Natl Acad Sci USA 93:3416–3421

    PubMed  CAS  Google Scholar 

  • Alex LA, Korch C, Selitrennikoff CP, Simon MI (1998) COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci USA 95:7069–7073

    PubMed  CAS  Google Scholar 

  • Alonso-Monge R, Navarro-Garcia F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sanchez M, Nombela C (1999) Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181:3058–3068

    PubMed  CAS  Google Scholar 

  • Alonso-Monge R, Navarro-Garcia F, Roman E, Negredo AI, Eisman B, Nombela C, Pla J (2003) The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2:351–361

    PubMed  CAS  Google Scholar 

  • Arellano M, Duran A, Perez P (1996) Rho 1 GTPase activates the (1–3)β-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. EMBO J 15:4584–4591

    PubMed  CAS  Google Scholar 

  • Arellano M, Cartagena-Lirola H, Hajibagheri MAN, Duran A, Valdivieso MH (2000) Proper ascospore maturation requires the chs1+ chitin synthase gene in Schizosaccharomyces pombe. Mol Microbiol 35:79–89

    PubMed  CAS  Google Scholar 

  • Aufauvre-Brown A, Mellado E, Gow NAR, Holden DW (1997) Aspergillus fumigatus chsE: a gene related to CHS3 of Saccharomyces cerevisiae and important for hyphal growth and conidiophore development but not pathogenicity. Fungal Genet Biol 21:141–152

    PubMed  CAS  Google Scholar 

  • Bader T, Bodendorfer B, Schroppel K, Morschhauser J (2003) Calcineurin is essential for virulence in Candida albicans. Infect Immun 71:5344–5354

    PubMed  CAS  Google Scholar 

  • Bahmed K, Quiles F, Bonaly R, Coulon J (2003) Fluorescence and infrared spectrometric study of cell walls from Candida, Kluyveromyces, Rhodotorula and Schizosaccharomyces yeasts in relation with their chemical composition. Biomacromolecules 4:1763–1772

    PubMed  CAS  Google Scholar 

  • Baladron V, Ufano S, Duenas E, Martin-Cuadrado AB, del Rey F, Vazquez de Aldana CR (2002) Eng1p, an endo-1,3-beta-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot Cell 1:774–786

    PubMed  CAS  Google Scholar 

  • Barbosa IP, Kemmelmeier C (1993) Chemical composition of the hyphal wall from Fusarium graminearum. Exp Mycol 17:274–283

    CAS  Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S, Reyes E (1968) Polyuronides in the cell walls of Mucor rouxii. Biochim Biophys Acta 170:54–62

    PubMed  CAS  Google Scholar 

  • Beauvais A, Bruneau JM, Mol PC, Buitrago MJ, Legrand R, Latgé JP (2001) Glucan synthase complex of Aspergillus fumigatus. J Bacteriol 183:2273–2279

    PubMed  CAS  Google Scholar 

  • Beauvais A, Maubon D, Park S, Morelle W, Huerre M, Perlin D, Latgé JP (2004) Two α(1–3) glucan synthases with different functions in Aspergillus fumigatus. Appl Environ Microbiol 71:1531–1538

    Google Scholar 

  • Berbee ML, Taylor JW (1999) Fungal phylogeny. In: Oliver PR, Schweizer M (eds) Molecular fungal biology. Cambridge University Press, London, pp 21–77

    Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolutions: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol VII. Springer, Berlin Heidelberg New York, pp 229–245

    Google Scholar 

  • Bernard M, Latgé JP (2001) Aspergillus fumigatus cell wall: composition and biosynthesis. Med Mycol 39:9–17

    PubMed  CAS  Google Scholar 

  • Bernard M, Mouyna I, Dubreucq G, Debeaupuis JP, Fontaine T, Vorgias C, Fuglsang C, Latgé JP (2002) Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus. Microbiology 148:2819–2829

    PubMed  CAS  Google Scholar 

  • Blankenship JR, Wormley FL, Boyce MK, Schell WA, Filler SG, Perfect JR, Heitman J (2003) Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot Cell 2:422–430

    PubMed  CAS  Google Scholar 

  • Bobbitt TF, Nordin JH (1978) Hyphal nigeran as a potential phylogenetic marker for Aspergillus and Penicillium species. Mycologia 70:1201–1211

    PubMed  CAS  Google Scholar 

  • Boorsma A, de Nobel H, ter Riet B, Bargmann B, Brul S, Hellingwerf KJ, Klis FM (2004) Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast 21:413–427

    PubMed  CAS  Google Scholar 

  • Bottom CB, Siehr DJ (1980) Structure and composition of the alkali-insoluble cell wall fraction of Coprinus macrorhizus var. microsporus. Can J Biochem 58:147–153

    PubMed  CAS  Google Scholar 

  • Bowen AR, Chen-Wu JL, Momany M, Young R, Szaniszlo PJ, Robbins PW (1992) Classification of fungal chitin synthases. Proc Natl Acad Sci USA 89:519–523

    PubMed  CAS  Google Scholar 

  • Breinig F, Schleinkofer K, Schmitt MJ (2004) Yeast Kre1p is GPI-anchored and involved in both cell wall assembly and architecture. Microbiology 150:3209–3218

    PubMed  CAS  Google Scholar 

  • Brown AJP (2002) Morphogenetic signalling pathways in Candida albicans In: Calderone RA (ed) Candida and candidiasis. ASM Press, Washington, DC, pp 95–106

    Google Scholar 

  • Bruneau JM, Magnin T, Tagat E, Legrand R, Bernard M, Diaquin M, Fudali C, Latgé JP (2001) Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis 22:2812–2823

    PubMed  CAS  Google Scholar 

  • Bruneteau M, Perret J, Rouhier P, Michel G (1992) Structure of β-D-glucans from Fusarium oxysporum. Carbohydr Res 236:345–348

    PubMed  CAS  Google Scholar 

  • Bulik DA, Olczak M, Lucero HA, Osmond BC, Robbins PW, Specht CA (2003) Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot Cell 2:886–900

    PubMed  CAS  Google Scholar 

  • Bull AT (1970) Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J Gen Microbiol 63:75–94

    PubMed  CAS  Google Scholar 

  • Cabib E (1991) Differential inhibition of chitin synthetases 1 and 2 fromSaccharomyces cerevisiae by polyoxin D and nikkomycins. Antimicrob Agents Chemother 35:170–173

    PubMed  CAS  Google Scholar 

  • Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Cell Biol 276:19679–19682

    CAS  Google Scholar 

  • Calcagno AM, Bignell E, Rogers TR, Canedo M, Muhlschlegel FA, Haynes K (2004) Candida glabrata Ste20 is involved in maintaining cell wall integrity and adaptation to hypertonic stress, and is required for wild-type levels of virulence. Yeast 21:557–568

    PubMed  CAS  Google Scholar 

  • Calera JA, Calderone R (1999) Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology 145:1431–1442

    PubMed  CAS  Google Scholar 

  • Calera JA, Zhao XJ, Calderone R (2000) Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun 68:518–525

    PubMed  CAS  Google Scholar 

  • Calonge TM, Nakano K, Arellano M, Arai R, Katayama S, Toda T, Mabuchi I, Perez P (2000) Schizosaccharomyces pombe Rho2p GTPase regulates cell wall a-glucan biosynthesis through the protein kinase Pck2p. Mol Biol Cell 11:4393–4401

    PubMed  CAS  Google Scholar 

  • Calonge TM, Arellano M, Coll PM, Perez P (2003) Rga5p is a specific Rho1p GTPase-activating protein that regulates cell integrity in Schizosaccharomyces pombe. Mol Microbiol 47:507–518

    PubMed  CAS  Google Scholar 

  • Caro LH, Tettelin H, Vossen JH, Ram AF, van den Ende H, Klis FM (1997) In silicio identification of glycosylphosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489

    PubMed  CAS  Google Scholar 

  • Carotti C, Ragni E, Palomares O, Fontaine T, Tedeschi G, Rodriguez R, Latgé JP, Vai M, Popolo L (2004) Characterization of recombinant forms of the yeast Gas1 protein and identification of residues essential for glucanosyltransferase activity and folding. Eur J Biochem 271:3635–3645

    PubMed  CAS  Google Scholar 

  • Castillo L, Martinez AI, Garcera A, Elorza MV, Valentin E, Sentandreu R (2003)Functional analysisof the cysteine residues and the repetitive sequence of Saccharomyces cerevisiae Pir4/Cis3: the repetitive sequence is needed for binding to the cell wall β-1,3-glucan. Yeast 20:973–983

    PubMed  CAS  Google Scholar 

  • Castro O, Chen LY, Parodi AJ, Abeijon C (1999) Uridine diphosphate-glucose transport into the endoplasmic reticulum of Saccharomyces cerevisiae: in vivo and in vitro evidence. Mol Biol Cell 10:1019–1030

    PubMed  CAS  Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161

    PubMed  CAS  Google Scholar 

  • Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62:130–180

    PubMed  CAS  Google Scholar 

  • Chauhan N, Inglis D, Roman E, Pla J, Li D, Calera JA, Calderone R (2003) Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot Cell 2:1018–1024

    PubMed  CAS  Google Scholar 

  • Cherniak R, Morris LC, Meyer SA, Mitchell TB (1993) Glucuronoxylomannan of Cryptococcus neoformans obtained from patients with AIDS. Carbohydr Res 249:405–413

    PubMed  CAS  Google Scholar 

  • Choi WJ, Santos B, Duran A, Cabib E (1994) Are yeast chitin synthases regulated at the transcriptional or the posttranslational level? Mol Cell Biol 14:7685–7694

    PubMed  CAS  Google Scholar 

  • Chung N, Mao C, Heitman J, Hannun YA, Obeid LM (2001) Phytosphingosine as a specific inhibitor of growth and nutrient import in Saccharomyces cerevisiae. J Biol Chem 276:35614–35621

    PubMed  CAS  Google Scholar 

  • Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA (2002) fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med Mycol 40:259–262

    PubMed  CAS  Google Scholar 

  • Coluccio A, Bogengruber E, Conrad MN, Dresser ME, Briza P, Neiman AM (2004) Morphogenetic pathway of spore wall assembly in Saccharomyces cerevisiae. Eukaryot Cell 3:1464–1475

    PubMed  CAS  Google Scholar 

  • Cortes JC, Ishiguro J, Duran A, Ribas JC (2002) Localization of the (1,3)beta-D-glucan synthase catalytic subunit homologue Bgs1p/Cps1p from fission yeast suggests that it is involved in septation, polarized growth, mating, spore wall formation and spore germination. J Cell Sci 115:4081–4096

    PubMed  CAS  Google Scholar 

  • Cos T, Ford RA, Trilla JA, Duran A, Cabib E, Roncero C (1998) Molecular analysis of Chs3p participation in chitin synthase III activity. Eur J Biochem 256:419–426

    PubMed  CAS  Google Scholar 

  • Crespo JL, Hall MN (2002) Elucidating TOR signalling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 66:579–591

    PubMed  CAS  Google Scholar 

  • Cruz MC, Del Poeta M, Wang P, Wenger R, Zenke G, Quesniaux VF, Movva NR, Perfect JR, Cardenas ME, Heitman J (2000) Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrob Agents Chemother 44:143–149

    PubMed  CAS  Google Scholar 

  • Daniels KJ, Lockhart SR, Staab JF, Sundstrom P, Soll DR (2003) The adhesin Hwp1 and the first daughter cell localize to the a/a portion of the conjugation bridge during Candida albicans mating. Mol Biol Cell 14:4920–4930

    PubMed  CAS  Google Scholar 

  • Da Silva MM, Polizeli ML, Jorge JA, Terenzi HF (1994) Cell wall deficiency in “slime” strains of Neurospora crassa: osmotic inhibition of cell wall synthesis and β-D-glucan synthase activity. Braz J Med Biol Res 27:2843–2857

    Google Scholar 

  • Datema R, van den Ende H, Wessels JG (1977a) The hyphal wall of Mucor mucedo 1. Polyanionic polymers. Eur J Biochem 80:611–619

    PubMed  CAS  Google Scholar 

  • Datema R, van den Ende H, Wessels JG (1977b) The hyphal wall of Mucor mucedo 2. Hexosamin containing polymers. Eur J Biochem 80:621–626

    PubMed  CAS  Google Scholar 

  • Dean N (1999) Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1426:309–322

    PubMed  CAS  Google Scholar 

  • De Groot PWJ, Ruiz C, Vazquez de Aldana CR, Duenas E, Cid VJ, del Rey F, Rodriguez-Pena JM, Pérez P, Andel A, Caubin J et al. (2001) A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2:124–142

    Google Scholar 

  • De Groot PW, Hellingwer KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20:781–796

    PubMed  Google Scholar 

  • Dekker N, Speijer D, Grun CH, van den Berg M, de Haan A, Hochstenbach F (2004) Role of the alpha-glucanase Agn1p in fission-yeast cell separation. Mol Biol Cell 15:3903–3914

    PubMed  CAS  Google Scholar 

  • Del Poeta M, Cruz MC, Cardenas ME, Perfect JR, Heitman J (2000) Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob Agents Chemother 44:739–746

    PubMed  Google Scholar 

  • DeMarini DJ, Adams AEM, Fares H, De Virgilio C, Valle G, Chuang JS, Pringle JR (1997) A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 139:75–93

    PubMed  CAS  Google Scholar 

  • Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151

    PubMed  CAS  Google Scholar 

  • Dijkgraaf GJ, Abe M, Ohya Y, Bussey H (2002) Mutaions in Fks1p affect the cell wall content of β-1,3-and β-1,6-glucan in Saccharomyces cerevisiae. Yeast 19:671–690

    PubMed  CAS  Google Scholar 

  • Dixon KP, Xu JR, Smirnoff N, Talbot NJ (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–2058

    PubMed  CAS  Google Scholar 

  • Dohrmann PR, Butler G, Tamai K, Dorland S, Greene JR, Thiele DJ, Stillman DJ (1992) Parallel pathways of gene regulation: homologous regulators SW15 and ACE2 differentially control transcription of HO and chitinase. Genes Dev 6:93–104

    PubMed  CAS  Google Scholar 

  • Douglas CM (2001) Fungal β(1,3)-D-glucan synthesis. Med Mycol 39:55–66

    PubMed  CAS  Google Scholar 

  • Douglas CM, Marrinan JA, Li W, Kurtz MB (1994) A Saccharomyces cerevisiaemutant with echinocandin resistant β1,3-D-glucan synthase activity. J Bacteriol 176:5686–5696

    PubMed  CAS  Google Scholar 

  • Edlind TD, Katiyar SK (2004) The echinocandin “target” identified by cross-linking is a homolog of Pil1 and Lsp1, sphingolipid-dependent regulators of cell wall integrity signaling. Antimicrob Agents Chemother 48:4491

    PubMed  CAS  Google Scholar 

  • Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 19:243–253

    Google Scholar 

  • El-Sherbeini M, Clemas JA (1995) Cloning and characterization of GNS1: a Saccharomyces cerevisiae gene involved in synthesis of 1,3-beta-glucan in vitro. J Bacteriol 177:3227–3234

    PubMed  CAS  Google Scholar 

  • Feoktistova A, Magnelli P, Abeijon C, Perez P, Lester RL, Dickson RC, Gould KL (2001) Coordination between fission yeast glucan formation and growth requires a sphingolipase activity. Genetics 158:1397–1411

    PubMed  CAS  Google Scholar 

  • Firon A, Beauvais A, Latgé JP, Couvé E, Grosjean-Cournoyer MC, D’Enfert C (2002) Characterization of essential genes by parasexual genetics in the human fungal pathogen Aspergillus fumigatus: impact of genomic rearrangements associated with electroporation of DNA. Genetics 161:1077–1087

    PubMed  CAS  Google Scholar 

  • Fitch PG, Gammie AE, Lee DJ, de Candal VB, Rose MD (2004) Lrg1p Is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Genetics 168:733–746

    PubMed  CAS  Google Scholar 

  • Fleet GH (1985) Composition and structure of yeast cell walls. Curr Topics Med Mycol 1:24–56

    CAS  Google Scholar 

  • Fleet GH (1991) Cell walls. In: Rose AH, Harrisson JD (eds) The yeast. Academic Press, New York, pp 199–277

    Google Scholar 

  • Fleet GH, Manners DJ (1976) Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae. J Gen Microbiol 94:180–192

    PubMed  CAS  Google Scholar 

  • Fleet GH, Manners DJ (1977) The enzymic degradation of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae. J Gen Microbiol 98:315–327

    PubMed  CAS  Google Scholar 

  • Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J, Vorgias CE, Diaquin M, Latgé JP (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607

    PubMed  CAS  Google Scholar 

  • Frieman MB, Cormack BP (2004) Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 150:3105–3114

    PubMed  CAS  Google Scholar 

  • Fujii T, Shimoi H, Iimura Y (1999) Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae. Biochim Biophys Acta 1427:133–144

    PubMed  CAS  Google Scholar 

  • Fukamizo T, Honda Y, Toyoda H, Ouchi S, Goto S (1996) Chitinous component of the cell wall of Fusarium oxysporum, its structure deduced from chitosanase digestion. Biosci Biotechnol Biochem 60:1705–1708

    PubMed  CAS  Google Scholar 

  • Fukazawa Y, Kagaya K, Shinoda T (1995) Cell wall polysaccharides of pathogenic yeasts. Curr Topics Med Mycol 6:189–219

    CAS  Google Scholar 

  • Furukawa K, Katsuno Y, Urao T, Yabe T, Yamada-Okabe T, Yamada-Okabe H, Yamagata Y, Abe K, Nakajima T (2002) Isolation and functional analysis of a gene, tcsB, encoding a transmembrane hybrid-type histidine kinase from Aspergillus nidulans. Appl Environ Microbiol 68:5304–5310

    PubMed  CAS  Google Scholar 

  • Gardiner RE, Souteropoulos P, Park S, Perlin DS (2005) Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Med Mycol 43 (in press)

    Google Scholar 

  • Gaughran JP, Lai MH, Kirsch DR, Silverman SJ (1994) Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J Bacteriol 176:5857–5860

    PubMed  CAS  Google Scholar 

  • Goldman RC, Sullivan PA, Zakula D, Capobianco JO (1995) Kinetics of β-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur J Biochem 227:372–378

    PubMed  CAS  Google Scholar 

  • Green R, Lesage G, Sdicu AM, Menard P, Bussey H (2003) A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway. Microbiology 149:2487–2499

    PubMed  CAS  Google Scholar 

  • Grün CH, Hochstenbach F, Humbel BM, Verkleij AJ, Sietsma JH, Klis FM, Kamerling JP, Vliegenthart JFG (2005) The structure of cell wall a-glucan from fission yeast. Glycobiology 5:245–57

    Google Scholar 

  • Guest GM, Lin X, Momany M (2004) Aspergillus nidulans RhoA is involved in polar growth, branching, and cell wall synthesis. Fungal Genet Biol 41:13–22

    PubMed  CAS  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    PubMed  CAS  Google Scholar 

  • Hamada K, Fukuchi S, Arisawa M, Baba M, Kitada K (1998) Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae. Mol Gen Genet 258:53–59

    PubMed  CAS  Google Scholar 

  • Harrison JC, Zyla TR, Bardes ES, Lew DJ (2004) Stress-specific activation mechanisms for the “cell integrity” MAPK pathway. J Biol Chem 279:2616–2622

    PubMed  CAS  Google Scholar 

  • Hartland RP, Vermeulen CA, Klis FM, Sietsma JH, Wessels JG (1994) The linkage of (1–3)-β-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast 10:1591–1599

    PubMed  CAS  Google Scholar 

  • Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32:671–680

    PubMed  CAS  Google Scholar 

  • Hirata D, Nakano K, Fukui M, Takenaka H, Miyakawa T, Mabuchi I (1998) Genes that cause aberrant cell morphology by overexpression in fission yeast: a role of a small GTP-binding protein Rho2 in cell morphogenesis. J Cell Sci 111:149–159

    PubMed  CAS  Google Scholar 

  • Hiura N, Nakajima T, Matsuda K (1983) Two cell wall β-D-glucans from Neurospora crassa. Agric Biol Chem 47:1317–1322

    CAS  Google Scholar 

  • Hochstenbach F, Klis FM, van den Ende H, Van Donselaar E, Peters PJ, Klausner RD (1998) Identification of a putative a-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc Natl Acad Sci USA 95:9161–9166

    PubMed  CAS  Google Scholar 

  • Hoddinott J, Olsen OA (1972) A study of the carbohydrates in the cell walls of some species of the Entomophthorales. Can J Bot 50:1675–1679

    CAS  Google Scholar 

  • Hogan LH, Klein BS (1994) Altered expression of surface β-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect Immun 62:3543–3546

    PubMed  CAS  Google Scholar 

  • Horiuchi H, Fujiwara M, Yamashita S, Ohta A, Takagi M (1999) Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. J Bacteriol 181:3721–3729

    PubMed  CAS  Google Scholar 

  • Houston DR, Eggleston I, Synstad B, Eijsink VG, van Aalten DM (2002) The cyclic dipeptide CI-4 [cyclo-(l-Argd-Pro)] inhibits family 18 chitinases by structural mimicry of a reaction intermediate. Biochem J 368:23–27

    PubMed  CAS  Google Scholar 

  • Humbel BM, Konomi M, Takagi T, Kamasawa N, Ishijima SA, Osumi M (2001) In situ localization of beta-glucans in the cell wall of Schizosaccharomyces pombe. Yeast 18:433–444

    PubMed  CAS  Google Scholar 

  • Inoue SB, Qadota H, Arisawa M, Watanabe T, Ohya Y (1999) Prenylation of Rho1p is required for activation of yeast 1,3-β-glucan synthase. J Biol Chem 274:38119–38124

    PubMed  CAS  Google Scholar 

  • Ishiguro J, Saitou A, Duran A, Ribas JC (1997) cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. J Bacteriol 179:7653–7662

    PubMed  CAS  Google Scholar 

  • Jacques AK, Fukamizo T, Hall D, Barton RC, Escott GM, Parkinson T, Hitchcock CA, Adams DJ (2003) Disruption of the gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. Microbiology 149:2931–2939

    Google Scholar 

  • James PJ, Cherniak R, Jones RG (1990) Cell-wall glucans of Cryptococcus neoformans Cap67. Carbohydr Res 198:23–38

    PubMed  CAS  Google Scholar 

  • Jikibara T, Takegawa K, Iwahara S (1992) Studies on the uronic acid-containing glycoproteins of Fusarium sp. M7-1. I. Isolationand some properties of the glycoproteins. J Biochem 111:225–229

    PubMed  CAS  Google Scholar 

  • Jung US, Levin DE (1999) Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34:1049–1057

    PubMed  CAS  Google Scholar 

  • Kapteyn JC, Montijn RC, Dijkgraaf GJ, van den Ende H, Klis FM (1995) Covalent association of β-1,3-glucan with b-1,6-glucosylated mannoproteins in cell walls of Candida albicans. J Bacteriol 177:3788–3792

    PubMed  CAS  Google Scholar 

  • Kapteyn JC, Montijn RC, Vink E, de la Cruz J, Llobell A, Douwes JE, Shimoi H, Lipke PN, Klis FM (1996) Retention of Saccharomyces cerevisiae cell wall proteins though a phosphodiester-linked β-1,3-/β-1,6-glucan heteropolymer. Glycobiology 6:337–345

    PubMed  CAS  Google Scholar 

  • Kapteyn JC, Ram AFJ, Groos EM, Kollar R, Montijn RC, van den Ende H, Llobell A, Cabib E, Klis FM (1997) Altered extent of cross-linking of β1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutant with reduced cell wall β1,3-glucan content. J Bacteriol 179:6279–6284

    PubMed  CAS  Google Scholar 

  • Kapteyn JC, van den Ende H, Klis FM (1999) The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426:373–383

    PubMed  CAS  Google Scholar 

  • Kapteyn JC, Hoyer LL, Hecht JE, Muller WH, Andel A, Verkleij AJ, Makarow M, Van Den Ende H, Klis FM (2000) The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35:601–611

    PubMed  CAS  Google Scholar 

  • Katayama S, Hirata D, Arellano M, Perez P, Toda T (1999) Fission yeast a-glucan synthase Mok1 requires the actin cytoskeleton to localize the sites of growth and plays an essential role in cell morphogenesis downstream of protein kinase C function. J Cell Biol 144:1173–1186

    PubMed  CAS  Google Scholar 

  • Kawasaki L, Sanchez O, Shiozaki K, Aguirre J (2002) SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 45:1153–1163

    PubMed  CAS  Google Scholar 

  • King L, Butler G (1998) Ace2p, a regulator of CTS1 (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae. Curr Genet 34:183–191

    PubMed  CAS  Google Scholar 

  • Kitagaki H, Wu H, Shimoi H, Ito K (2002) Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol Microbiol 46:1011–1122

    PubMed  CAS  Google Scholar 

  • Kitagaki H, Ito K, Shimoi H (2004) A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls. Eukaryot Cell 3:1297–1306

    PubMed  CAS  Google Scholar 

  • Klimpel KR, Goldman WE (1988) Cell walls from avirulent variants of Histoplasma capsulatum lack α-(1,3)-glucan. Infect Immun 56:2997–3000

    PubMed  CAS  Google Scholar 

  • Klis FM (1994) Review: cell wall assembly in yeast. Yeast 10:851–869

    PubMed  CAS  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256

    PubMed  CAS  Google Scholar 

  • Kollar R, Petrakova E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall. The linkage between chitin and β(1–3)-glucan. J Biol Chem 270:1170–1178

    PubMed  CAS  Google Scholar 

  • Kollar R, Reinhold BB, Petrakova E, Yeh HJC, Ashwell G, Drgonova J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall: b-1-6-glucan interconnects mannoprotein, β(1–3)-glucan, and chitin. J Biol Chem 272:17762–17788

    PubMed  CAS  Google Scholar 

  • Konomi M, Fujimoto K, Toda T, Osumi M (2003) Characterization and behaviour of α-glucan synthase in Schizosaccharomyces pombe as revealed by electron microscopy. Yeast 20:427–438

    PubMed  CAS  Google Scholar 

  • Kopecka M, Fleet GH, Phaff HJ (1995) Ultrastructure of the cell wall of Schizosaccharomyces pombe following treatment with various glucanases. J Struct Biol 114:140–152

    PubMed  CAS  Google Scholar 

  • Kraus PR, Heitman J (2003) Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochem Biophys Res Commun 311:1151–1157

    PubMed  CAS  Google Scholar 

  • Kraus PR, Fox DS, Cox GM, Heitman J (2003) The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol Microbiol 48:1377–1387

    PubMed  CAS  Google Scholar 

  • Kroh M, Knuiman B, Kirby EG, Sassen MM(1977) Cell wall formation in zoospores of Allomyces arbuscula. III. Carbohydrate composition of cell walls during development from meiospores to hyphae. Arch Microbiol 113:73–78

    PubMed  CAS  Google Scholar 

  • Kruppa M, Goins T, Williams D, Li D, Chauhan N, Singh P, Cutler J, Calderone R (2003) The Chk1p of Candida albicans and its role in the regulation of cell wall synthesis. FEMS Yeast Res 3:289–299

    PubMed  CAS  Google Scholar 

  • Kuranda MJ, Robbins PW (1991) Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem 266:19758–19767

    PubMed  CAS  Google Scholar 

  • Kurtz MB, Abruzzo G, Flattery A, Bartizal K, Marrinan JA, Li W, Milligan J, Nollstadt K, Douglas CM (1996) Characterization of echinocandin-resistant mutants of Candida albicans: genetic, biochemical, and virulence studies. Infect Immun 64:3244–3251

    PubMed  CAS  Google Scholar 

  • Lagorce A, Le Berre-Anton V, Aguilar-Uscanga B, Martin-Yken H, Dagkessamanskaia A, Francois J (2002) Involvement of GFA1, which encodes glutamine-fructose-6-phosphate amidotransferase, in the activation of the chitin synthesis pathway in response to cell-wall defects in Saccharomyces cerevisiae. Eur J Biochem 269:1697–1707

    PubMed  CAS  Google Scholar 

  • Lagorce A, Hauser NC, Labourdette D, Rodriguez C, Martin-Yken H, Arroyo J, Hoheisel JD, Francois J (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278:20345–20357

    PubMed  CAS  Google Scholar 

  • Latgé JP, Beauvais A (1987) Wall composition of the protoplastic Entomophthorales. J Invert Pathol 50:53–57

    Google Scholar 

  • Latgé JP, Fournet B, Cole G, Dubourdiau D, Tong N (1984) Composition chimique et ultrastructurale des parois de corps hyphaux et des azygospores de Conidiobolus obscurus. Can J Microbiol 30:1507–1521

    Google Scholar 

  • Latgé JP, Bouziane H, Diaquin M (1988) Ultrastructure and composition of the conidial wall of Cladosporium cladosporioides. Can J Microbiol 34:1325–1329

    PubMed  Google Scholar 

  • Latgé JP, Kobayashi H, Debeaupuis JP, Diaquin M, Sarfati J, Wieruszeski JM, Parra E, Bouchara JP, Fournet B (1994) Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect Immun 62:5424–5433

    PubMed  Google Scholar 

  • Latgé JP, Mouyna I, Tekaia F, Beauvais A, Debeaupuis JP, Nierman W (2005) Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Med Mycol 43 (in press)

    Google Scholar 

  • Leal JA, Jimenez-Barbero J, Gomez-Miranda B, Prieto A, Domenech J, Bernabe M (1996) Structural investigation of a cell-wall galactomannan from Neurospora crassa and Neurospora sitophila. Carbohydr Res 283:215–222

    PubMed  CAS  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    PubMed  CAS  Google Scholar 

  • Lesage G, Sdicu AM, Menard P, Shapiro J, Hussein S, Bussey H (2004) Analysis of β-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167:35–49

    PubMed  CAS  Google Scholar 

  • Li D, Bernhardt J, Calderone R (2002) Temporal expression of the Candida albicans genes esophageal epithelial candidiasis. Infect Immun 70:1558–1565

    PubMed  CAS  Google Scholar 

  • Liu J, Wang H, McCollum D, Balasubramanian MK (1999) Drc1p/Cps1p, a 1,3-β-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe. Genetics 153:1193–1203

    PubMed  CAS  Google Scholar 

  • Liu J, Tang X, Wang H, Balasubramanian M (2000) Bgs2p, a 1,3-beta-glucan synthase subunit, is essential for maturation of ascospore wall in Schizosaccharomyces pombe. FEBS Lett 478:105–108

    PubMed  CAS  Google Scholar 

  • Liu H, Wang Z, Zheng L, Hauser M, Kauffman S, Becker JM (2001) Relevance of chitin and chitin synthases to virulence in Wangiella (Exophiala) dermatitidis — a model melanized pathogen of humans. In: Muzzarelli RAA (ed) Chitin enzymology. Atec Edizioni, Grottammare, Italy, pp 463–472

    Google Scholar 

  • Liu J, Tang X, Wang H, Oliferenko S, Balasubramanian MK (2002) The localization of the integral membrane protein Cps1p to the cell division site is dependent on the actomyosin ring and the septation-inducing network in Schizosaccharomyces pombe. Mol Biol Cell 13:989–1000

    PubMed  CAS  Google Scholar 

  • Lowman DW, Ferguson DA, Williams DL (2003) Structural characterization of (1->3)-β-D-glucans isolated from blastospore and hyphal forms of Candida albicans. Carbohydr Res 338:1491-1496

    Google Scholar 

  • Machi K, Azuma M, Igarashi K, Matsumoto T, Fukuda H, Kondo A, Ooshima H (2004) Rot1p of Saccharomyces cerevisiae is a putative membrane protein required for normal levels of the cell wall 1,6-β-glucan. Microbiology 150:3163–3173

    PubMed  CAS  Google Scholar 

  • Manners DJ, Meyer MT (1977) The molecular structures of some glucans from the cell walls of Schizosaccharomyces pombe. Carbohydr Res 57:187–203

    Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC (1973a) The structure of a β-(1-3)-D-glucan from yeast cell walls. Biochem J 135:19–30

    PubMed  CAS  Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC, Bjorndal H, Lindberg B (1973b) The structure of a β-(1-6)-D-glucan from yeast cell walls. Biochem J 135:31–36

    PubMed  CAS  Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC (1974) The heterogeneity of glucan preparations from the walls of various yeasts. J Gen Microbiol 80:411–417

    PubMed  CAS  Google Scholar 

  • Markovich S, Yekutiel A, Shalit I, Shadkchan Y, Osherov N (2004) Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cerevisiae. Antimicrob Agents Chemother 48:3871–3876

    PubMed  CAS  Google Scholar 

  • Martin V, Ribas JC, Carnero E, Duran A, Sanchez Y (2000) bgs2+, a sporulation-specific glucan synthase homologue is required for proper ascospore wall maturation in fission yeast. Mol Microbiol 38:308–321

    PubMed  CAS  Google Scholar 

  • Martin V, Garcia B, Carnero E, Duran A, Sanchez Y (2003) Bgs3p, a putative 1,3-beta-glucan synthase subunit, is required for cell wall assembly in Schizosaccharomyces pombe. Eukaryot Cell 2:159–169

    PubMed  CAS  Google Scholar 

  • Martin-Cuadrado AB, Duenas E, Sipiczki M, Vazquez de Aldana CR, del Rey F (2003) The endo-b-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 116:1689–1698

    PubMed  CAS  Google Scholar 

  • Martin-Garcia R, Duran A, Valdivieso MH (2003) In Schizosaccharomyces pombe chs2p has no chitin synthase activity but is related to septum formation. FEBS Lett 549:176–180

    PubMed  CAS  Google Scholar 

  • Martin-Yken H, Dagkessamanskaia A, Basmaji F, Lagorce A, Francois J (2003) The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae. Mol Microbiol 49:23–35

    PubMed  CAS  Google Scholar 

  • Masubuchi K, Taniguchi M, Umeda I, Hattori K, Suda H, Kohchi Y, Isshiki Y, Sakai T, Kohchi M, Shirai M et al. (2000) Synthesis and structure-activity relationships of novel fungal chitin synthase inhibitors. Bioorg Med Chem Lett 10:1459–1462

    PubMed  CAS  Google Scholar 

  • Masuoka J (2004) Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev 17:281–310

    PubMed  CAS  Google Scholar 

  • Matheos DP, Kingsbury TJ, Ahsan US, Cunningham KW (1997) Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev 11:3445–3458

    PubMed  CAS  Google Scholar 

  • Matsuo Y, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (2004) Genetic analysis of chs1+ and chs2+ encoding chitin synthases fromSchizosaccharomyces pombe. Biosci Biotechnol Biochem 68:1489–1499

    PubMed  CAS  Google Scholar 

  • Mazur P, Morin N, Baginsky W, el-Sherbeini M, Clemas JA, Nielsen JB, Foor F (1995) Differential expression and function of two homologous subunits of yeast 1,3-β-D-glucan synthase. Mol Cell Biol 15:5671–5681

    PubMed  CAS  Google Scholar 

  • Mellado E, Aufauvre-Brown A, Gow NAR, Holden DW (1996) The Aspergillus fumigatus chsC and chsG genes encode Class III chitin synthases with different functions. Mol Microbiol 20:667–679

    PubMed  CAS  Google Scholar 

  • Mellado E, Dubreucq G, Mol P, Sarfati J, Paris S, Diaquin M, Holden DW, Rodriguez-Tudela JL, Latgé JP (2003) Cell wall biogenesis in a double chitin synthase mutant (chsG-/chsE-) of Aspergillus fumigatus. Fungal Genet Biol 38:98–109

    PubMed  CAS  Google Scholar 

  • Merkel O, Fido M, Mayr JA, Pruger H, Raab F, Zandonella G, Kohlwein SD, Paltauf F (1999) Characterization and function in vivo of two novel phospholipases B/lysophospholipases from Saccharomyces cerevisiae. J Biol Chem 274:28121–28127

    PubMed  CAS  Google Scholar 

  • Michalenko GO, Hohl H, Rast D (1976) Chemistry and architecture of the mycelial wall of Agaricus bisporus. J Gen Microbiol 92:251–262

    CAS  Google Scholar 

  • Miyazaki T, Irino T (1970) Acidic polysaccharides from the cell wall of Absidia cylindrospora, Mucor mucedo, and Rhizopus nigricans. Chem Pharm Bull 18:1930–1931

    PubMed  CAS  Google Scholar 

  • Miyazaki T, Irino T (1971) Studies on fungal polysaccharides. IX. The acidic polysaccharide from the cell wall of Rhizopus nigricans. Chem Pharm Bull 19:2545–2550

    PubMed  CAS  Google Scholar 

  • Moukadiri I, Zueco J (2001) Evidence for the attachment of Hsp150/Pir2 to the cell wall of Saccharomyces cerevisiae through disulfide bridges. FEMS Yeast Res 1:241–245

    PubMed  CAS  Google Scholar 

  • Mouyna I, Latgé JP (2001) Cell wall of Aspergillus fumigatus: Structure, biosynthesis and role in host-fungus interactions. In: Cilhar R, Calderone R (eds) Fungal pathogenesis: principles and clinical applications. Dekker, New York, pp 515–537

    Google Scholar 

  • Mouyna I, Hartland RP, Fontaine T, Diaquin M, Latgé JP (1998) A b(1-3) glucanosyltransferase isolated from the cell wall of Aspergillus fumigatus is an homolog of the yeast Bgl2p. Microbiology 144:3171–3180

    PubMed  CAS  Google Scholar 

  • Mouyna I, Monod M, Fontaine T, Henrissat B, Léchenne B, Latgé JP (2000a) Identification of the catalytic residues of the first family of β(1-3)glucanosyltransferases identified in fungi. Biochem J 347:741–747

    PubMed  CAS  Google Scholar 

  • Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latgé JP (2000b) GPI-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889

    PubMed  CAS  Google Scholar 

  • Mouyna I, Sarfati J, Recco P, Fontaine T, Henrissat B, Latgé JP (2002) Molecular characterization of a cell wall-associated β(1-3) endoglucanase of Aspergillus fumigatus. Med Mycol 40:455–464

    PubMed  CAS  Google Scholar 

  • Mouyna I, Henry C, Doering TL, Latgé JP (2004) Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol Lett 237:317–324

    PubMed  CAS  Google Scholar 

  • Moye-Rowley WS (2003) Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot Cell 2:381–389

    PubMed  CAS  Google Scholar 

  • Mrsa V, Tanner W(1999) Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast 15:813–820

    PubMed  CAS  Google Scholar 

  • Mühlschlegel FA, Fonzi WA (1997) PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17:5960–5967

    PubMed  Google Scholar 

  • Munoz P, Norambuena L, Orellana A (1996) Evidence for a UDP-glucose transporter in Golgi apparatus-derived vesicles from pea and its possible role in polysaccharide biosynthesis. Plant Physiol 112:1585–1594

    PubMed  CAS  Google Scholar 

  • Munro CA, Gow NA (2001) Chitin synthesis in human pathogenic fungi. Med Mycol 39:41–53

    PubMed  CAS  Google Scholar 

  • Munro CA, Winter K, Buchan A, Henry K, Becker JM, Brown AJ, Bulawa CE, Gow NA (2001) Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 39:1414–1426

    PubMed  CAS  Google Scholar 

  • Nagahashi S, Sudoh M, Ono N, Sawada R, Yamaguchi E, Uchida Y, Mio T, Takagi M, Arisawa M, Yamada-Okabe H (1995) Characterization of chitin synthase 2 of Saccharomyces cerevisiae. Implication of two highly conserved domains as possible catalytic sites. J Biol Chem 270:13961–13967

    PubMed  CAS  Google Scholar 

  • Navarro-Garcia F, Sanchez M, Pla J, Nombela C (1995) Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 15:2197–2206

    PubMed  CAS  Google Scholar 

  • Navarro-Garcia F, Alonso-Monge R, Rico H, Pla J, Sentandreu R, Nombela C (1998) A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 144:411–424

    PubMed  CAS  Google Scholar 

  • Nelson B, Parsons AB, Evangelista M, Schaefer K, Kennedy K, Ritchie S, Petryshen TL, Boone C (2004) Fus1p interacts with components of the Hog1p mitogen-activated protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during yeast mating. Genetics 166:67–77

    PubMed  CAS  Google Scholar 

  • Nguyen TH, Fleet GH, Rogers PL (1998) Composition of the cell walls of several yeast species. Appl Microbiol Biotechnol 50:206–212

    PubMed  CAS  Google Scholar 

  • Nollstadt KH, Powles MA, Fujioka H, Aikawa M, Schmatz DM (1994) Use of β-1,3-glucan-specific antibody to study the cyst wall of Pneumocystis carinii and effects of pneumocandin B0 analog L-733,560. Antimicrob Agents Chemother 38:2258–2265

    PubMed  CAS  Google Scholar 

  • Nyfeler R, Keller-Schierlein W (1974) Metabolites of microorganisms. 143. Echinocandin B, a novel polypeptideantibiotic from Aspergillus nidulans var. echinulatus: isolation and structural componenst. Helv Chim Acta 57:2459–2477

    PubMed  CAS  Google Scholar 

  • Obi K, Uda J, Iwase K, Sugimoto O, Ebisu H, Matsuda A (2000) Novel nikkomycin analogues: inhibitors of the fungal cell wall biosynthesis enzyme chitin synthase. Bioorg Med Chem Lett 10:1451–1454

    PubMed  CAS  Google Scholar 

  • Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J (1997) Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 16:2576–2589

    PubMed  CAS  Google Scholar 

  • Olsen V, Cawley NX, Brandt J, Egel-Mitani M, Loh YP (1999) Identification and characterization of Saccharomyces cerevisiae yapsin 3, a new member of the yapsin family of aspartic proteases encoded by the YPS3 gene. Biochem J 339:407–411

    PubMed  CAS  Google Scholar 

  • Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L et al. (2000) Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 44:368–377

    PubMed  CAS  Google Scholar 

  • O’Rourke SM, Herskowitz I, O’Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18:405–412

    PubMed  CAS  Google Scholar 

  • Orpin CG (1977) The occurrence of chitin in the cell walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. J Gen Microbiol 99:215–218

    PubMed  CAS  Google Scholar 

  • Palecek SP, Parikh AS, Kron SJ (2002) Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Microbiology 148:893–907

    PubMed  CAS  Google Scholar 

  • Papanikolau Y, Tavlas G, Vorgias CE, Petratos K (2003) De novo purification scheme and crystallization conditions yield high-resolution structures of chitinase A and its complex with the inhibitor allosamidin. Acta Crystallogr D Biol Crystallogr 59:400–403

    PubMed  Google Scholar 

  • Park BC, Park YH, Park HM (2003) Activation of chsC transcription by AbaA during asexual development of Aspergillus nidulans. FEMS Microbiol Lett 220:241–246

    PubMed  CAS  Google Scholar 

  • Perez P, Ribas JC (2004) Cell wall analysis. Methods 33:245–251

    PubMed  CAS  Google Scholar 

  • Philip B, Levin DE (2001) Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21:271–280

    PubMed  CAS  Google Scholar 

  • Philippe B, Ibrahim-Granet O, Prévost MC, Gougerot-Pocidalo MA, Roes J, Sanchez-Perez M, Van der Meeren A, Latgé JP (2003) Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun 71:3034–3042

    PubMed  CAS  Google Scholar 

  • Popolo L, Vai M (1999) The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim Biophys Acta 1426:385–400

    PubMed  CAS  Google Scholar 

  • Popolo L, Gualtieri T, Ragni E (2001) The yeast cell-wall salvage pathway. Med Mycol 39:111–121

    PubMed  CAS  Google Scholar 

  • Pott GB, Miller TK, Bartlett JA, Palas JS, Selitrennikoff CP (2000) The isolation of FOS-1, a gene encoding a putative two-component histidine kinase from Aspergillus fumigatus. Fungal Genet Biol 31:55–67

    PubMed  CAS  Google Scholar 

  • Rao FV, Houston DR, Boot RG, Aerts JMF, Hodkinson M, Adams DJ, Shiomi K, Omura S, van Aalten DM (2005) Specificity and affinity of natural product cyclopentapeptide inhibitors against Aspergillus fumigatus, human and bacterial chitinases. Chem Biol 12:65–76

    PubMed  CAS  Google Scholar 

  • Reese AJ, Doering TL (2003) Cell wall α-1,3-glucan is required to anchor theCryptococcus neoformans capsule. Mol Microbiol 50:1401–1409

    PubMed  CAS  Google Scholar 

  • Reinoso-Martin C, Schyller C, Schuetzer-Muehlbauer M, Kuchler K (2003) The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell 2:1200–1210

    PubMed  CAS  Google Scholar 

  • Reiss E (1986) Molecular immunology of mycotic and actinomycotic infections. Elsevier, Amsterdam

    Google Scholar 

  • Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR et al. (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880

    PubMed  CAS  Google Scholar 

  • Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C (2000) A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20:3245–3255

    PubMed  CAS  Google Scholar 

  • Rohde J, Heitman J, Cardenas ME (2001) The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276:9583–9586

    PubMed  CAS  Google Scholar 

  • Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378

    PubMed  CAS  Google Scholar 

  • Ruiz C, Cid VJ, Lussier M, Molina M, Nombela C (1999) A large-scale sonication assay for cell wall mutant analysis in yeast. Yeast 15:1001–1008

    PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J, Leon CG, Carabez-Trejo A, Reyes-Salinas E (1996) Structure and chemical composition of the cell walls from the haploid yeast and mycelial forms of Ustilago maydis. Fungal Genet Biol 20:133–142

    PubMed  CAS  Google Scholar 

  • San-Blas G, San-Blas F, Serrano LE (1977) Host-parasite relationships in the yeast like form of Paracoccidioides brasiliensis strain IVIC Pb9. Infect Immun 15:343–346

    PubMed  CAS  Google Scholar 

  • Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J (2003) Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 48:959–976

    PubMed  CAS  Google Scholar 

  • Santos JL, Shiozaki K (2001) Fungal histidine kinases. Sci STKE 2001:RE1

    Google Scholar 

  • Santos B, Snyder M (1997) Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J Cell Biol 136:95–110

    PubMed  CAS  Google Scholar 

  • Santos B, Duran A, Valdivieso H (1997) CHS5, a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae. Mol Cell Biol 17:2485–2496

    PubMed  CAS  Google Scholar 

  • Santos B, Gutierrez J, Calonge TM, Perez P (2003) Novel Rho GTPase involved in cytokinesis and cell wall integrity in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 2:521–533

    PubMed  CAS  Google Scholar 

  • Sanz M, Trilla JA, Duran A, Roncero C (2002) Control of chitin synthesis through Shc1p, a functional homologue of Chs4p specifically induced during sporulation. Mol Microbiol 43:1183–1195

    PubMed  CAS  Google Scholar 

  • Sanz M, Castrejon F, Duran A, Roncero C (2004) Saccharomyces cerevisiae Bni4p directs the formation of the chitin ring and also participates in the correct assembly of the septum structure. Microbiology 150:3229–3241

    PubMed  CAS  Google Scholar 

  • Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613

    PubMed  CAS  Google Scholar 

  • Schaefer HP (1977) An alkali-soluble polysaccharide from the cell walls of Coprinus lagopus. Arch Microbiol 113:79–82

    PubMed  CAS  Google Scholar 

  • Schmidt M (2004) Survival and cytokinesis of Saccharomyces cerevisiae in the absence of chitin. Microbiology 150:3253–3260

    PubMed  CAS  Google Scholar 

  • Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609

    PubMed  CAS  Google Scholar 

  • Schmidt M, Bowers B, Varma A, Roh DH, Cabib E (2002) In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J Cell Sci 115:293–302

    PubMed  CAS  Google Scholar 

  • Schoffelmeer EA, Klis FM, Sietsma JH, Cornelissen BJ (1999) The cell wall of Fusarium oxysporum. Fungal Genet Biol 27:275–282

    PubMed  CAS  Google Scholar 

  • Sekiya-Kawasaki M, Abe M, Saka A, Watanabe D, Kono K, Minemura-Asakawa M, Ishihara S, Watanabe T, Ohya Y (2002) Dissection of upstream regulatory components of the Rho1p effector, 1,3-β-glucan synthase, in Saccharomyces cerevisiae. Genetics 162:663–676

    PubMed  CAS  Google Scholar 

  • Selvaggini S, Munro CA, Paschoud S, Sanglard D, Gow NA (2004) Independent regulation of chitin synthase and chitinase activity in Candida albicans and Saccharomyces cerevisiae. Microbiology 150:921–928

    PubMed  CAS  Google Scholar 

  • Shahinian S, Bussey H (2000) β-1,6-Glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35:477–489

    PubMed  CAS  Google Scholar 

  • Shahinian S, Dijkgraaf GJ, Sdicu AM, Thomas DY, Jakob CA, Aebi M, Bussey H (1998) Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall β-1,6-glucan of Saccharomyces cerevisiae. Genetics 149:843–856

    PubMed  CAS  Google Scholar 

  • Shaw JA, Mol PC, Bowers B, Silverman SJ, Valdivieso MH, Duran A, Cabib E (1991) The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol 114:111–123

    PubMed  CAS  Google Scholar 

  • Sietsma JH, Wessels JG (1977) Chemical analysis of the hyphal wall of Schizophyllum commune. Biochim Biophys Acta 496:225–239

    PubMed  CAS  Google Scholar 

  • Sietsma JH, Wessels JGH (1979) Evidence for covalent linkages between chitin and β-glucan in a fungal wall. J Gen Microbiol 1979:99–108

    Google Scholar 

  • Sietsma JH, Wessels JG (1981) Solubility of (1,3)-β-D/(1,6)-β-D-glucan in fungal walls: importance of presumed linkage between glucan and chitin. J Gen Microbiol 125:209–212

    PubMed  CAS  Google Scholar 

  • Sikkema WD, Lovett JS (1984) Cell wall composition of the aquatic fungus Blastocladiella emersonii. Exp Mycol 8:225–237

    CAS  Google Scholar 

  • Singh P, Chauhan N, Ghosh A, Dixon F, Calderone R (2004) SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect Immun 72:2390–2394

    PubMed  CAS  Google Scholar 

  • Skucas GP (1967) Structure and composition of the resistant sporangial wall in the fungus allomyces. Am J Bot 54:1152–1158

    PubMed  CAS  Google Scholar 

  • Smits GJ, Kapteyn JC, van den Ende H, Klis FM (1999) Cell wall dynamics in yeast. Curr Opin Microbiol 2:348–352

    PubMed  CAS  Google Scholar 

  • Sprague GF, Cullen PJ, Goehring AS (2004) Yeast signal transduction: regulation and interface with cell biology. Adv Exp Med Biol 547:91–105

    PubMed  CAS  Google Scholar 

  • Spreghini E, Davis DA, Subaran R, Kim M, Mitchell AP (2003) Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot Cell 2:746–755

    PubMed  CAS  Google Scholar 

  • Steinbach WJ, Singh N, Miller JL, Benjamin DK Jr, Schell WA, Heitman J, Perfect JR (2004) In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus isolates from transplant and nontransplant patients. Antimicrob Agents Chemother 48:4922–4925

    PubMed  CAS  Google Scholar 

  • Stolz J, Munro S (2002) The components of the Saccharomyces cerevisiae mannosyltransferase complex MPol I have distinct functions in mannan synthesis. J Biol Chem 277:44801–44808

    PubMed  CAS  Google Scholar 

  • Sugawara T, Takahashi S, Osumi M, Ohno N (2004) Refinement of the structures of cell-wall glucans of Schizosaccharomyces pombe by chemical modification and NMR spectroscopy. Carbohydr Res 339:2255–2265

    PubMed  CAS  Google Scholar 

  • Sugiura R, Sio S, Shuntoh H, Kuno T (2002) Calcineurin phosphatase in signal transduction: lessons from fission yeast. Genes Cells 7:619–627

    PubMed  CAS  Google Scholar 

  • Surarit R, Gopal PK, Shepherd MG (1988) Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans. J Gen Microbiol 134:1723–1730

    PubMed  CAS  Google Scholar 

  • Tada T, Ohmori M, Iida H (2003) Molecular dissection of the hydrophobic segments H3 and H4 of the yeast Ca2+ channel component Mid1. J Biol Chem 278:9647–9654

    PubMed  CAS  Google Scholar 

  • Takaya N, Yamazaki D, Horiuchi H, Ohta A, Takagi M (1998) Cloning and characterization of a chitinase-encoding gene (chiA) from Aspergillus nidulans, disruption of which decreases germination frequency and hyphal growth. Biosci Biotechnol Biochem 62:60–65

    PubMed  CAS  Google Scholar 

  • Takeshita N, Ohta A, Horiuchi H (2002) csmA, a gene encoding a class V chitin synthase with a myosin motor-like domain of Aspergillus nidulans, is translatedas a single polypeptide and regulated in response to osmotic conditions. Biochem Biophys Res Commun 298:103–109

    PubMed  CAS  Google Scholar 

  • Tatebayashi K, Takekawa M, Saito H (2003) A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J 22:3624–3634

    PubMed  CAS  Google Scholar 

  • Thompson JR, Douglas CM, Li W, Jue CK, Pramanik B, Yuan X, Rude TH, Toffaletti DL, Perfect JR, Kurtz M (1999) A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function. J Bacteriol 181:444–453

    PubMed  CAS  Google Scholar 

  • Tominaga Y, Tsujisaka Y (1981) Investigations of the structure of Rhizopus cell wall with lytic enzymes. Agric Biol Chem 45:1569–1575

    CAS  Google Scholar 

  • Torosantucci A, Chiani P, de Bernardis F, Cassone A, Calera JA, Calderone R (2002) Deletion of the two-component histidine kinase gene (CHK1) of Candida albicans contributes to enhanced growth inhibition and killing by human neutrophils in vitro. Infect Immun 70:985–987

    PubMed  CAS  Google Scholar 

  • Tougan T, Chiba Y, Kakihara Y, Hirata A, Nojima H (2002) Meu10 is required for spore wall maturation in Schizosaccharomyces pombe. Genes Cells 7:217–231

    PubMed  CAS  Google Scholar 

  • Traxler P, Gruner J, Auden JA (1977) Papulacandins, a new family of antibiotics with antifungal activity. I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E. J Antibiot (Tokyo) 30:289–296

    CAS  Google Scholar 

  • Trilla JA, Cos T, Duran A, Roncero C (1997) Characterization of CHS4 (CAL2), a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4. Yeast 13:795–807

    PubMed  CAS  Google Scholar 

  • Trilla JA, Duran A, Roncero C (1999) Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 145:1153–1163

    PubMed  CAS  Google Scholar 

  • Troy FA, Koffler H (1969) The chemistry and molecular architecture of the cell walls of Penicilliumchrysogenum. J Biol Chem 244:5563–5576

    PubMed  CAS  Google Scholar 

  • Utsugi T, Minemura M, Hirata A, Abe M, Watanabe D, Ohya Y (2002) Movement of yeast 1,3-b-glucan synthase is essential for uniform cell wall synthesis. Genes Cells 7:1–9

    PubMed  CAS  Google Scholar 

  • Vaaje-Kolstad G, Houston DR, Rao FV, Peter MG, Synstad B, van Aalten DM, Eijsink VG (2004) Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin. Biochim Biophys Acta 1696:103–111

    PubMed  CAS  Google Scholar 

  • Vaishnav VV, Bacon BE, O’Neill M, Cherniak R (1998) Structural characterization of the galactoxylomannan of Cryptococcus neoformans Cap67. Carbohydr Res 306:315–330

    PubMed  CAS  Google Scholar 

  • Valdivia RH, Schekman R (2003) The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Natl Acad Sci USA 100:10287–10292

    PubMed  CAS  Google Scholar 

  • Valdivia RH, Baggot D, Chuang JS, Schekman R (2002) The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev Cell 2:283–294

    PubMed  CAS  Google Scholar 

  • Valdivieso MH, Duran A, Roncero C (1997) Chitin biosynthesis and morphogenetic processes. In: Brambl R, Marzluf GA (eds) The Mycota, vol III. Biochemistry and molecular biology. Springer, Berlin Heidelberg New York, pp 275–290

    Google Scholar 

  • Van der Vaart JM, Caro LH, Chapman JW, Klis FM, Verrips CT (1995) Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177:3104–3110

    PubMed  Google Scholar 

  • Vay HA, Philip B, Levin DE (2004) Mutational analysis of the cytoplasmic domain of the Wsc1 cell wall stress sensor. Microbiology 150:3281–3288

    PubMed  CAS  Google Scholar 

  • Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2:533–540

    PubMed  CAS  Google Scholar 

  • Vink E, Rodriguez-Suarez RJ, Gerard-Vincent M, Ribas JC, de Nobel H, van den Ende H, Duran A, Klis FM, Bussey H (2004) Anin vitro assay for (1,6)-β-D-glucan synthesis in Saccharomyces cerevisiae. Yeast 21:1121–1131

    PubMed  CAS  Google Scholar 

  • Virginia M, Appleyard CL, McPheat WL, Stark MJ (2000) A novel ‘two-component’ protein containing histidine kinase and response regulator domains required for sporulation in Aspergillus nidulans. Curr Genet 37:364–372

    PubMed  CAS  Google Scholar 

  • Vongsamphanh R, Fortier PK, Ramotar D (2001) Pir1p mediates translocation of the yeast Apn1p endonuclease into the mitochondria to maintain genomic stability. Mol Cell Biol 21:1647–55

    PubMed  CAS  Google Scholar 

  • Walker AN, Garner RE, Horst MN (1990) Immunocytochemical detection of chitin in Pneumocystis carinii. Infect Immun 58:412–415

    PubMed  CAS  Google Scholar 

  • Walsh TJ, Teppler H, Donowitz GR, Maertens JA, Baden LR, Dmoszynska A, Cornely OA, Bourque MR, Lupinacci RJ, Sable CA et al. (2004) Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N Engl J Med 351:1391–1402

    PubMed  CAS  Google Scholar 

  • Wang Z, Zheng L, Hauser M, Becker JM, Szaniszlo PJ (1999) WdChs4p, a homolog of chitin synthase 3 in Saccharomyces cerevisiae, alone cannot support growth of Wangiella (Exophiala) dermatitidis at the temperature of infection. Infect Immun 67:6619–6630

    PubMed  CAS  Google Scholar 

  • Wang Q, Liu H, Szaniszlo PJ (2002) Compensatory expression of five chitin synthase genes, a response to stress stimuli, in Wangiella (Exophiala) dermatitidis, amelanized fungal pathogen of humans. Microbiology 148:2811–2817

    PubMed  CAS  Google Scholar 

  • Watanabe D, Abe M, Ohya Y (2001) Yeast Lrg1p acts as a specialized RhoGAP regulating 1,3-β-glucan synthesis. Yeast 18:943–951

    PubMed  CAS  Google Scholar 

  • Wei Y, Zhang Y, Derewenda U, Liu X, Minor W, Nakamoto RK, Somlyo AV, Somlyo AP, Derewenda ZS (1997) Crystal structure of RhoA-GDP and its functional implications. Nat Struct Biol 4:699–703

    PubMed  CAS  Google Scholar 

  • Wei H, Scherer M, Singh A, Liese R, Fischer R (2001) Aspergillus nidulans alpha-1,3 glucanase (mutanase), mutA, is expressed during sexual development and mobilizes mutan. Fungal Genet Biol 34:217–227

    PubMed  CAS  Google Scholar 

  • Xu JR (2000) Map kinases in fungal pathogens. Fungal Genet Biol 31:137–152

    PubMed  CAS  Google Scholar 

  • Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706

    PubMed  CAS  Google Scholar 

  • Yamaguchi I, Kubo Y (1992) Target sites of melanin biosynthesis inhibitors. In:Köller W (ed) Target sites of fungicide action. CRC Press, Boca Raton, pp 101–114

    Google Scholar 

  • Zhang X, Lester RL, Dickson RC (2004) Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J Biol Chem 279:22030–22038

    PubMed  CAS  Google Scholar 

  • Zhao C, Jung US, Garrett-Engele P, Roe T, Cyert MS, Levin DE (1998) Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol 18:1013–1022

    PubMed  CAS  Google Scholar 

  • Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406:90–94

    PubMed  CAS  Google Scholar 

  • Ziman M, Chuang JS, Schekman RW (1996) Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell 7:1909–1919

    PubMed  CAS  Google Scholar 

  • Ziman M, Chuang JS, Tsung M, Hamamoto S, Schekman R (1998) Chs6p-dependent anterograde transport of Chs3p from the chitosome to the plasma membrane in Saccharomyces cerevisiae. Mol Biol Cell 9:1565–1576

    PubMed  CAS  Google Scholar 

  • Zonnenveld BJM (1971) Biochemical analysis of the cell wall of Aspergillus nidulans. Biochem Biophys Acta 249:506–514

    Google Scholar 

  • Zu T, Verna J, Ballester R (2001)Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment of Rlm1-dependent gene expression in Saccharomyces cerevisiae. Mol Genet Genomics 266:142–155

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Latgé, J.P., Calderone, R. (2006). The Fungal Cell Wall. In: Kües, U., Fischer, R. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28135-5_5

Download citation

Publish with us

Policies and ethics