Skip to main content

Decomposition and Mineralization of Nutrients from Litter and Humus

  • Chapter
Book cover Nutrient Acquisition by Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 181))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Melillo JM (1980) Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Can J Bot 58:416–421

    CAS  Google Scholar 

  • Aber JD, Melillo JM (1982) Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can J Bot 60:2263–2269

    CAS  Google Scholar 

  • Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208

    Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Google Scholar 

  • Aerts R, de Caluwe H (1989) Aboveground productivity and nutrient turnover of Molina caerulea along an experimental gradient of nutrient availability. Oikos 54:320–325

    Google Scholar 

  • Aerts R, de Caluwe H (1997) Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78:244–260

    Article  Google Scholar 

  • Allison FE (1973) Soil organic matter and its role in crop production. Elsevier, Amsterdam

    Google Scholar 

  • Anderson JM (1992) Responses of soils to climate change. Adv Ecol Res 22:163–210

    CAS  Google Scholar 

  • Arnold SS, Fernandez I, Rustad LE, Zibilske LM (1999) Microbial response of an acid forest soil to experimental soil warming. Biol Fert Soils 30:239–244

    Article  Google Scholar 

  • Axelsson G, Berg B (1988) Fixation of ammonia (15N) to Pinus sylvestris needle litter in different stages of decomposition. Scand J For Res 3:273–279

    Google Scholar 

  • Baath E, Lohm U, Lundgren B, Rosswall T, Soderstrom B, Sohlenius B, Wiren A (1978) The effect of nitrogen and carbon supply on the development of soil organism populations and pine seedlings: a microcosm experiment. Oikos 31:153–163

    Google Scholar 

  • Bartos DL, DeByle NV (1981) Quantity, decomposition, and nutrient dynamics of aspen litter fall in Utah. For Sci 27:381–390

    Google Scholar 

  • Berg B (1988) Dynamics of nitrogen (15N) in decomposing Scots pine (Pinus sylvestris) needle litter. Long-term decomposition in a Scots pine forest, VI. Can J Bot 66:1539–1546

    CAS  Google Scholar 

  • Berg B (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots Pine forest, VII. Can J Bot 69:1449–1456

    Google Scholar 

  • Berg B, Ekbohm G (1983) Nitrogen immobilization in decomposing needle litter at variable carbon:nitrogen ratios. Ecology 64:63–67

    Article  Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest, VII. Can J Bot 69:1449–1456

    Article  Google Scholar 

  • Berg B, Ekbohm G (1993) Decomposing needle litter in Pinus contorta (lodgepole pine) and Pinus sylvestris (Scots pine) monoculture systems — is there a maximum mass loss? Scand J For Res 8:457–465

    Google Scholar 

  • Berg B, Laskowski R (1997) Changes in nutrient concentrations and nutrient release in decomposing needle litter in monocultural systems of Pinus contorta and Pinus sylvestris — a comparison and synthesis. Scand J For Res 12:113–121

    Google Scholar 

  • Berg B, Soderstrom B (1979) Fungal biomass and nitrogen in decomposing Scots pine needle litter. Soil Biol Biochem 11:339–341

    Article  CAS  Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes in Scots pine needle litter. 2. Influence of chemical composition. Ecol Bull (Stockholm) 32:363–372

    CAS  Google Scholar 

  • Berg B, Tamm CO (1994) Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. ll. Nutrient concentrations in decomposing Picea abies needle litter. Scand J For Res 9:99–105

    Google Scholar 

  • Berg B, Theander O (1984) Dynamics of some nitrogen fractions in decomposing Scots pine needle litter. Pedobiologia 27:261–267

    Google Scholar 

  • Berg B, Staaf H, Wessen B (1987) Decomposition and nutrient release in needle litter from nitrogen-fertilized Scots pine (Pinus sylvestris) stands. Scand J For Res 2:399–415

    Google Scholar 

  • Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Calvan De Anta R, Couteaux MM, Esudero A, Gallardo A, Kratz W, Madeira M, Malkonen E, McClaugherty CA, Meentemeyer V, Munoz F, Piussi P, Remacle J, Virzo de Santo A (1993) Litter mass loss in pine forests of Europe and Eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry 20:127–153

    Google Scholar 

  • Berg B, McClaugherty CA, Virzo de Santo A, Johansson MB, Ekbohm G (1995) Decomposition of litter and soil organic matter — can we distinguish a mechanism for soil organic matter buildup? Scand J For Res 10:108–119

    Google Scholar 

  • Berg B, Ekbohm G, Johansson M, McClaugherty C, Rutlgliano F, Virzo de Santo A (1996) Maximum decomposition limits of forest litter types: a synthesis. Can J Bot 74:659–672

    Article  Google Scholar 

  • Berg B, Johansson M, Meentemeyer V, Kratz W (1998) Decomposition of tree root litter in a climatic transect of coniferous forests in Northern Europe: a synthesis. Scand J For Res 13:402–412

    Google Scholar 

  • Berg B, Johansson MB, Meentemeyer V (2000) Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control. Can J For Res 30:1136–1147

    Article  Google Scholar 

  • Biondini M (1988) Carbon and nitrogen losses through root exudation by Agropyron cristatum, A. Smithii and Bouteloua gracilis. Soil Biol Biochem 20:477–482

    Article  Google Scholar 

  • Bottner P, Couteaux M-M, Anderson JM, Berg B, Billès G, Bolger T, Casabianca H, Romanyá J, Rovira P (2000) Decomposition of 13C-labelled plant material in a European 65-40 latitudinal transect of coniferous forest soils: simulation of climate change by translocation of soils. Soil Biol Biochem 32:527–543

    Article  CAS  Google Scholar 

  • Bradley RL, Fyles JW (1995) Growth of paper birch (Betula papyrifera) seedlings increases soil available C and microbial acquisition of soil-nutrients. Soil Biol Biochem 27:1565–1571

    Article  CAS  Google Scholar 

  • Bradley RL, Fyles JW, Titus BD (1997) Labile C, humus form and N cycling in forests: concepts and methods. Recent Res Dev Soil Biol Biochem 1:63–76

    Google Scholar 

  • Bunnell FL, Tait DEN, Flanagan PW, Van Cleve K (1977) Microbial respiration and substrate weight loss. I. A general model of the influences of abiotic variables. Soil Biol Biochem 9:33–40

    Article  CAS  Google Scholar 

  • Burger JA, Pritchett WL (1984) Effects of clearfelling and site preparation on nitrogen mineralization in a southern pine stand. Soil Sci Soc Am J 48:1432–1437

    Article  CAS  Google Scholar 

  • Burke IC (1989) Control of nitrogen mineralization in a sagebrush steppe landscape. Ecology 70:1115–1126

    Article  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Chadwick DR, Ineson P, Woods C, Piearce TG (1998) Decomposition of Pinus sylvestris litter in litter bags: influence of underlying native litter layer. Soil Biol Biochem 30:47–55

    Article  CAS  Google Scholar 

  • Clarholm M (1985) Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants. In: Fitter AH (ed) Ecological interactions in soil. Blackwell, Boston, pp 355–365

    Google Scholar 

  • Constantinides M (1994) Nitrogen mineralization from leaves and litter of tropical plants: relationship to nitrogen, lignin and soluble polyphenol concentrations. Soil Biol Biochem 26:49–55

    Article  CAS  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Google Scholar 

  • Cornelissen JHC, Perez-Harguindeguy N, Diaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Ceraolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200

    Article  Google Scholar 

  • Cornelissen JHC, Perez-Harguindeguy N, Gwynn-Jones D, Diaz S, Callaghan TV, Aerts R (2000) Autumn leaf colours as indicators of decomposition rate in sycamore (Acer pseudoplatanus L.). Plant Soil 225:33–38

    Article  CAS  Google Scholar 

  • Cortez J (1998) Field decomposition of leaf litters: relationships between decomposition rates and soil moisture, soil temperature and earthworm activity. Soil Biol Biochem 30:783–793

    Article  CAS  Google Scholar 

  • Cotrufo MF, Ineson P (1995) Effects of enhanced atmospheric CO2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula pendula Roth. and Picea sitchensis (Bong.) Carr. Plant Soil 170:267–277

    Article  CAS  Google Scholar 

  • Cotrufo MF, Ineson P, Rowland AP (1994) Decomposition of tree leaf litters grown under elevated CO2: effect of litter quality. Plant Soil 163:121–130

    Google Scholar 

  • Cotrufo MF, Raschi A, Lanini M, Ineson P (1999) Decomposition and nutrient dynamics of Quercus pubescens leaf litter in a naturally enriched CO2 Mediterranean ecosystem. Funct Ecol 13:343–351

    Article  Google Scholar 

  • Cotrufo MF, Ineson P, Roberts D (2001) Decomposition of birch leaf litters with varying C-to-N ratios. Soil Biol Biochem 27:1219–1221

    Article  Google Scholar 

  • Couteaux M, Mousseau M, Célérier M, Bottner P (1991) Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61:54–64

    Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition climate and litter quality. Trends Ecol Evol 10:63–66

    Article  Google Scholar 

  • Couteaux M-M, Kurz C, Bottner P, Raschi A (2000) Influence of increased atmospheric CO2 concentration on quality of plant material and litter decomposition. Tree Physiol 19:301–311

    Google Scholar 

  • Domisch T, Finer L, Laiho R, Karsisto M, Laine J (2000) Decomposition of Scots pine litter and the fate of released carbon in pristine and drained pine mires. Soil Biol Biochem 32:1571–1580

    Article  CAS  Google Scholar 

  • Douglas LA, Tedrow JCF (1959) Organic matter decomposition rates in arctic soils. Soil Sci 88:305–312

    CAS  Google Scholar 

  • Drew SW, Kadam KL (1979) Lignin metabolism by Aspergillus fumigatus and white-rot fungi. Dev Ind Microbiol 20:153–161

    Google Scholar 

  • Driebe EM, Whitham TG (2000) Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 123:99–107

    Article  Google Scholar 

  • Dyer ML, Meentemeyer V, Berg B (1990) Apparent controls of mass loss rate of leaf litter on a regional scale. Scand J For Res 5:311–323

    Article  Google Scholar 

  • Edmonds RL (1979) Decomposition and nutrient release in Douglas-fir needle litter in relation to stand development. Can J For Res 9:132–140

    Article  CAS  Google Scholar 

  • Edmonds RL (1980) Litter decomposition and nutrient release in Douglas-fir, red alder, western hemlock, and Pacific silver fir ecosystems in western Washington. Can J For Res 10:327–337

    Google Scholar 

  • Edmonds RL (1987) Decomposition rates and nutrient dynamics in small diameter woody litter in four forest ecosystems in Washington, U.S.A. Can J For Res 17:499–509

    CAS  Google Scholar 

  • Enriquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471

    Article  Google Scholar 

  • Finzi AC, Allen AS, DeLucia EH, Ellsworth DS, Schlesinger WH (2001) Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment. Ecology 82:470–484

    Article  Google Scholar 

  • Flanagan PW, Van Cleve K (1983) Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can J For Res 13:795–817

    CAS  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Google Scholar 

  • Fyles JW, McGill WB (1987) Decomposition of boreal forest litters from central Alberta under laboratory conditions. Can J For Res 17:109–114

    CAS  Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  PubMed  CAS  Google Scholar 

  • Giardina CP, Ryan MG, Hubbard RM, Binkley D (2001) Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci Soc Am J 65:1272–1279

    Article  CAS  Google Scholar 

  • Gosz JR, Likens GE, Bormann FH (1973) Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecol Monogr 43:173–191

    Article  Google Scholar 

  • Gower ST, Son Y (1992) Differences in soil and leaf litterfall nitrogen dynamics for five forest plantations. Soil Sci Soc Am J 56:1959–1966

    Article  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Groffman PM (1999) Carbon additions increase nitrogen availability in northern hardwood forest soils. Biol Fert Soils 29:430–433

    Article  CAS  Google Scholar 

  • Grogan P, Bruns TD, Chapin III FS (2000) Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122:537–544

    Article  Google Scholar 

  • Hagvar S, Edsberg E (2000) Vertical transport of decomposing spruce needles during nine years in a raw humus soil profile in southern Norway. Pedobiologia 44:119–131

    Article  Google Scholar 

  • Hart SC (1999) Nitrogen transformations in fallen tree boles and mineral soil of an old-growth forest. Ecology 80:1385–1394

    Article  Google Scholar 

  • Hart SC, Firestone MK (1992) Decomposition and nutrient dynamics of Ponderosa pine needles in a Mediterranean-type climate. Can J For Res 22:306–314

    CAS  Google Scholar 

  • Haynes RJ (1986) Mineral nitrogen in the plant-soil system. Academic Press, Toronto

    Google Scholar 

  • Helal HM, Sauerbeck DR (1984) Influence of plant roots on C and P metabolism in soil. Plant Soil 76:175–182

    Article  CAS  Google Scholar 

  • Hendrickson OQ, Robinson JB (1984) Effects of roots and litter on mineralization processes in forest soil. Plant Soil 80:391–405

    Article  CAS  Google Scholar 

  • Hirschel G, Korner C, Amone JA (1997) Will rising atmospheric CO2 affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia 110:387–392

    Article  Google Scholar 

  • Hirschfield JR, Finn JT, Patterson WA (1984) Effects of Robinia pseudoacacia on leaf litter decomposition and nitrogen mineralization in a northern hardwood stand. Can J For Res 14:201–205

    Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3:484–494

    Article  CAS  Google Scholar 

  • Hogg EH, Lieffers VJ, Wein RW (1992) Potential carbon losses from peat profiles: effects of temperature, drought cycles, and fire. Ecol Appl 2:298–306

    Google Scholar 

  • Howard PJA, Howard DM (1974) Microbial decomposition of tree and shrub leaf litter. 1. Weight loss and chemical composition of decomposing litter. Oikos 25:341–352

    CAS  Google Scholar 

  • Howard DM, Howard PJA (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem 25:1537–1546

    Article  Google Scholar 

  • Hunt HW, Ingham ER, Coleman DC, Elliott ET, Reid CPP (1988) Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology 69:1009–1016

    Article  Google Scholar 

  • Ingham RE (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Article  Google Scholar 

  • Jenny H, Gessel SP, Bingham FS (1949) Comparative studies of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68:419–432

    CAS  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Google Scholar 

  • Johansson MB (1994) Decomposition rates of Scots pine needle litter related to site properties, litter quality, and climate. Can J For Res 24:1771–1781

    CAS  Google Scholar 

  • Johansson MB, Berg B, Meentemeyer V (1995) Litter mass loss rates in late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest 9. Can J Bot 73:1509–1521

    Google Scholar 

  • Katterer T, Reichstein M, Andren O, Lomander A (1998) Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biol Fert Soils 27:258–262

    Article  CAS  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil organisms. Trends Ecol Evol 12:139–143

    Article  Google Scholar 

  • Kelly JM, Beauchamp JJ (1987) Mass loss and nutrient changes in decomposing upland oak and mesic mixed-hardwood leaf litter. Soil Sci Soc Am J 51:1616–1625

    Article  Google Scholar 

  • Kemp PR, Waldecker D, Reynolds JF, Virginia RA, Owensby CE (1994) Effects of elevated CO2 and nitrogen fertilization pretreatments on decomposition of tallgrass prairie leaf litter. Plant Soil 165:115–127

    CAS  Google Scholar 

  • Keyser PT, Kirk TK, Zeikus JG (1978) Lignolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol 135:790–797

    PubMed  CAS  Google Scholar 

  • Kim DY, Burger JA (1997) Nitrogen transformations and soil processes in a wastewater-irrigated, mature Appalachian hardwood forest. For Ecol Manage 90:1–11

    Article  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Klemmedson JO (1985) Needle decomposition and nutrient release in ponderosa pine ecosystems. For Sci 31:647–660

    Google Scholar 

  • Koutika L-S, Chone T, Andreux F, Burtin G, Cerri CC (1999) Factors influencing carbon decomposition of topsoils from the Brazilian Amazon Basin. Biol Fert Soils 28:436–438

    Article  CAS  Google Scholar 

  • Kwabiah AB, Voroney RP, Palm CA, Stoskopf NC (1999) Inorganic fertilizer enrichment of soil: effect on decomposition of plant litter under subhumid tropical conditions. Biol Fert Soils 30:224–231

    Article  Google Scholar 

  • Ladd JN (1983) Decomposition of plant material in Australian soils. I. The effect of quantity added on decomposition and on residual microbial biomass. Aust J Soil Res 21:563–570

    Article  Google Scholar 

  • Laine J, Silvola J, Tolonen K, Alm J, Nykanen H, Vasander H, Sallantaus T, Savolainen I, Sinisalo J, Martikainen PJ (1996) Effect of water level drawdown in northern peatlands on the global climatic warming. Ambio 25:179–184

    Google Scholar 

  • Laskowski R, Berg B, Johansson MB, McClaugherty C (1995) Release pattern for potassium from decomposing forest needle and leaf litter. Long-term decomposition in a Scots pine forest 9. Can J Bot 73:2019–2027

    CAS  Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A, Toutan F, Barois I, Schaefer R (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150

    Article  Google Scholar 

  • Lieffers VJ (1988) Sphagnum and cellulose decomposition in drained and natural areas of an Alberta peatland. Can J Soil Sci 68:755–762

    Article  CAS  Google Scholar 

  • Lousier JD, Parkinson D (1978) Chemical element dynamics in decomposing leaf litter. Can J Bot 56:2795–2812

    CAS  Google Scholar 

  • MacLean DA, Wein RW (1978) Weight loss and nutrient changes in decomposing litter and forest floor material in New Brunswick forest stands. Can J Bot 56:2730–2749

    CAS  Google Scholar 

  • Magill AH, Aber JD (1998) Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203:301–311

    Article  CAS  Google Scholar 

  • Magill AH, Aber JD (2000a) Variation in soil net mineralization rates with dissolved organic carbon additions. Soil Biol Biochem 32:597–601

    Article  CAS  Google Scholar 

  • Magill AH, Aber JD (2000b) Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biol Biochem 32:603–613

    Article  CAS  Google Scholar 

  • Martikainen P, Nykanen H, Almeida-Cortez JS, Silvola J (1995) Changes in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant Soil 168:571–577

    Article  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD (1985) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66:266–275

    Article  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Meentemeyer V, Berg B (1986) Regional variation in mass-loss of Pinus sylvestris needle litter in Swedish pine forests as influenced by climate and litter quality. Scand J For Res 1:167–180

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to organic matter. Plant Soil 115:189–198

    Article  Google Scholar 

  • Minderman G (1968) Addition, decomposition and accumulation of organic matter in forests. J Ecol 56:355–362

    Google Scholar 

  • Monleon VJ, Cromack K (1996) Long-term effects of prescribed underburning on litter decomposition and nutrient release in ponderosa pine stands in central Oregon. For Ecol Manage 81:143–152

    Article  Google Scholar 

  • Moore TR, Trofymow JA, Taylor B, Prescott C, Camire C, Duschene L, Fyles J, Kozak L, Krannabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S (1999) Litter decomposition rates in Canadian forests. Global Change Biol 5:75–82

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laudre JA (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72:242–253

    Article  Google Scholar 

  • Niklinska M, Maryanski M, Laskowski R (1999) Effect of temperature on humus respiration rate and nitrogen mineralization: implications for global climate change. Biogeochemistry 44:239–257

    Google Scholar 

  • Nohrstedt H-O, Arnebrant K, Baath E (1989) Changes in carbon content, respiration, ATP content, and microbial biomass in nitrogen-fertilized pine forest soil in Sweden. Can J For Res 19:323–328

    Google Scholar 

  • Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:33–70

    Article  Google Scholar 

  • O’Connell AM (1986) Effect of legume understorey on decomposition and nutrient content of eucalypt forest litter. Plant Soil 92:235–248

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Parmelee RW, Ehrenfeld JG, Tate RLI (1993) Effects of pine roots on microorganisms, fauna, and nitrogen availability in two soil horizons of a coniferous forest spodosol. Biol Fert Soils 15:113–119

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Ojima DS, Cole CB (1994) A general model for soil organic matter dynamics. In: Bryant RB, Arnold RW (eds) Sensitivity to litter chemistry, texture and management. Soil Sci Soc Am Spec Publ 38:137–167

    Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA, Melillo JM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268

    Article  CAS  Google Scholar 

  • Pastor J, Stillwell MA, Tilman D (1987) Little bluestem litter dynamics in Minnesota old fields. Oecologia 72:327–330

    Article  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic Press, San Diego

    Google Scholar 

  • Perez-Harguindeguy N, Diaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:30

    Google Scholar 

  • PeterJohn WT, Melillo JM, Bowles FP, Steudler PA (1993) Soil warming and trace gas fluxes: experimental design and preliminary flux results. Oecologia 93:18–24

    Google Scholar 

  • Peterson DL, Rolfe GL (1982) Nutrient dynamics and decomposition of litterfall in floodplain and upland forests of central Illinois. For Sci 28:667–681

    Google Scholar 

  • Polglase PJ, Tompkins D, Stewart LG, Falkiner RA (1995) Mineralization and leaching of nitrogen in an effluent-irrigated pine plantation. J Environ Qual 24:911–920

    Article  CAS  Google Scholar 

  • Prescott CE (1995) Does nitrogen availability control rates of litter decomposition in forests? Plant Soil 168/169:83–88

    Article  Google Scholar 

  • Prescott CE, MacDonald MA (1994) Effects of carbon and lime additions on mineralization of C and N in humus from cutovers of western red cedar — western hemlock forests on northern Vancouver Island. Can J For Res 24:2432–2438

    Google Scholar 

  • Prescott CE, Zabek LM (1997) Growth response and nutrient availability in western red cedar plantations following amendment with fish-wood compost and straw. Can J For Res 27:598–602

    Article  Google Scholar 

  • Prescott CE, Corbin JP, Parkinson D (1992) Immobilization and availability of N and P in the forest floors of fertilized Rocky Mountain coniferous forests. Plant Soil 143:1–10

    Article  CAS  Google Scholar 

  • Prescott CE, MacDonald MA, Weetman GF (1993a) Availability of N and P in the forest floors of adjacent stands of western red cedar-western hemlock and western hemlock-amabilis fir on northern Vancouver Island. Can J For Res 23:605–610

    CAS  Google Scholar 

  • Prescott CE, Taylor BR, Parsons WFJ, Durall DM, Parkinson D (1993b) Nutrient release from decomposing litter in Rocky Mountain coniferous forests: influence of nutrient availability. Can J For Res 23:1576–1586

    CAS  Google Scholar 

  • Prescott CE, Kishchuk BE, Weetman GF (1995) Long-term effects of repeated N fertilization and straw application in a jack pine forest. 3. Nitrogen availability in the forest floor. Can J For Res 25:1991–1996

    Google Scholar 

  • Prescott CE, Chappell HN, Vesterdal L (2000) Nitrogen turnover in forest floors of coastal Douglas-fir at sites differing in soil nitrogen capital. Ecology 81:1878–1886

    Article  Google Scholar 

  • Prescott CE, Zabek LM, Staley CL, Kabzems RD (2001) Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type and litter mixtures. Can J For Res 30:1742–1750

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu J (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    CAS  Google Scholar 

  • Priha O, Lehto T, Smolander A (1999) Mycorrhizas and C and N transformations in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings. Plant Soil 206:191–204

    Article  Google Scholar 

  • Raison RJ, Khanna PK, Connell MJ, Falkiner RA (1990) Effects of water availability and fertilization on nitrogen cycling in a stand of Pinus radiata. For Ecol Manage 30:31–43

    Article  Google Scholar 

  • Reich PB, Grigal DF, Aber JD, Gower ST (1997) Nitrogen mineralization and productivity in 50 harwood and conifer stands on diverse soils. Ecology 78:335–347

    Article  Google Scholar 

  • Reid CPP (1983) Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant Soil 71:415–432

    Article  CAS  Google Scholar 

  • Robbins CT, Mole S, Hagerman AE, Hanley TA (1987) Role of tannins in defending plants against ruminants: reduction in dry matter digestion? Ecology 68:1606–1615

    Article  CAS  Google Scholar 

  • Rustad LE (1994) Element dynamics along a decay continuum in a red spruce ecosystem in Maine, USA. Ecology 75:867–879

    Article  Google Scholar 

  • Rustad LE, Cronan CS (1988) Element loss and retention during litter decay in a red spruce stand in Maine. Can J For Res 18:947–953

    Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Rygiewicz PT, Andersen CP (1994) Mycorrhiza alter quality and quantity of carbon allocated below ground. Nature 369:58–60

    Article  Google Scholar 

  • Schlesinger WH (1985) Decomposition of chaparral shrub foliage. Ecology 66:1353–1360

    Article  Google Scholar 

  • Schlesinger WH, Hasey MM (1981) Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology 62:762–774

    Article  CAS  Google Scholar 

  • Schuur EAG, Chadwick OA, Matson PA (2001) Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology 82:3182–3196

    Article  Google Scholar 

  • Scott NA, Binkley D (1997) Foliage litter quality and annual net N mineralization: comparison across North American forest sites. Oecologia 111:151–159

    Article  Google Scholar 

  • Scott NA, Cole CV, Elliot ET, Huffman SA (1996) Soil textural control on decomposition and soil organic matter dynamics. Soil Sci Soc Am J 60:1102–1109

    Article  CAS  Google Scholar 

  • Seastedt TR, Parton WJ, Ojima DS (1992) Mass loss and nitrogen dynamics of decaying litter of grasslands: the apparent low nitrogen immobilization potential of root detritus. Can J Bot 70:384–391

    Google Scholar 

  • Seneviratne G (2000) Litter quality and nitrogen release in tropical agriculture: a synthesis. Biol Fert Soils 31:60–64

    Article  CAS  Google Scholar 

  • Setala H (2000) Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza. Oecologia 125:109–118

    Article  Google Scholar 

  • Soderstrom B (1978) Soil microfungi in three Swedish coniferous forests. Holarct Ecol 1:61–72

    Google Scholar 

  • Soderstrom B, Baath E, Lundgren B (1983) Decrease in soil microbial activity and biomasses owing to nitrogen amendments. Can J Microbiol 29:1500–1506

    Article  Google Scholar 

  • Staaf H (1980a) Release of plant nutrients from decomposing leaf litter in a South Swedish beech forest. Holarct Ecol 3:129–136

    Google Scholar 

  • Staaf H (1980b) Influence of chemical composition, addition of raspberry leaves, and nitrogen supply on decomposition rate and dynamics of nitrogen and phosphorus in beech leaf litter. Oikos 35:55–62

    CAS  Google Scholar 

  • Staaf H, Berg B (1977) Mobilization of plant nutrients in a Scots pine forest moor in central Sweden. Silva Fenn 11:210–216

    Google Scholar 

  • Staaf H, Berg B (1982) Accumulation and release of plant nutrients in decomposing Scots pine needle litter. Long-term decomposition in a Scots pine forest, II. Can J Bot 60:1561–1568

    CAS  Google Scholar 

  • Stanford G (1974) Nitrogen mineralization-water relations in soils. Soil Sci Soc Am Proc 38:103–106

    Google Scholar 

  • Stohlgren TJ (1988) Litter dynamics in two Sierran mixed conifer forests. 2. Nutrient release in decomposing leaf litter. Can J For Res 18:1136–1144

    Google Scholar 

  • Stottlemyer R, Toczydlowski D (1999) Nitrogen mineralization in a mature boreal forest, Isle Royal, Michigan. J Environ Qual 28:709–720

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Los Angeles

    Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989a) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Taylor BR, Parsons WFJ, Parkinson D (1989b) Decomposition of Populus tremuloides leaf litter accelerated by addition of Alnus crispa litter. Can J For Res 19:674–679

    Google Scholar 

  • Taylor BR, Prescott CE, Parsons WFJ, Parkinson D (1991) Substrate control of litter decomposition in four Rocky Mountain coniferous forests. Can J Bot 69:2242–2250

    Google Scholar 

  • Thomas RJ, Asakawa NM (1993) Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol Biochem 23:1351–1361

    Article  Google Scholar 

  • Tian G, Kang BT, Brussaard L (1992) Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions — decomposition and nutrient release. Soil Biol Biochem 24:1051–1060

    Article  CAS  Google Scholar 

  • Titus BD, Malcolm DC (1987) The effect of fertilization on litter decomposition in clear-felled spruce stands. Plant Soil 100:297–322

    Article  Google Scholar 

  • Titus BD, Malcolm DC (1999) The long-term decomposition of Sitka spruce needles in brash. Forestry 72:207–221

    Article  Google Scholar 

  • Tripathi SK, Singh KP (1992a) Abiotic and litter quality control during the decomposition of different plant parts in dry tropical bamboo savanna in India. Pedobiologia 36:241–256

    Google Scholar 

  • Tripathi SK, Singh KP (1992b) Nutrient immobilization and release patterns during plant decomposition in a dry tropical bamboo savanna, India. Biol Fert Soils 14:191–199

    Article  CAS  Google Scholar 

  • Upadhyay VP, Singh JS (1985) Nitrogen dynamics of decomposing hardwood leaf litter in a central Himalayan forest. Soil Biol Biochem 17:827–830

    Article  Google Scholar 

  • Van Cleve K, Barney R, Schlentner R (1981) Evidence of temperature control of production and nutrient cycling in two interior Alaska black spruce ecosystems. Can J For Res 11:258–273

    Google Scholar 

  • Van Veen JA, Kuikman PJ (1990) Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry 13:213–233

    Google Scholar 

  • Van Vuuren MMI, Berendse F, de Visser W (1993) Species and site differences in the decomposition of litters and roots from wet heathlands. Can J Bot 71:167–173

    Article  Google Scholar 

  • Vesterdal L (1999) Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Can J For Res 29:95–105

    Article  Google Scholar 

  • Visser S (1985) Role of the soil invertebrates in determining the composition of soil microbial communities. In: Fitter AH (ed) Ecological interactions in soil. Blackwell, Boston, pp 297–317

    Google Scholar 

  • Visser S, Parkinson D (1975) Fungal succession on aspen poplar leaf litter. Can J Bot 53:1640–1651

    Article  Google Scholar 

  • Vitousek PM, Turner DR, Parton WJ, Sanford RL (1994) Litter decomposition on the Mauna Loa environmental matrix, Hawai’i: patterns, mechanisms, and models. Ecology 75:418–429

    Article  Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Adv Ecol Res 15:303–377

    Google Scholar 

  • Wardle DA, Zackrisson O, Hornberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277:1296–1299

    Article  CAS  Google Scholar 

  • Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86:405–420

    Article  Google Scholar 

  • Wedin DA, Tilman DT (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433–441

    Google Scholar 

  • White DL (1988) Litter decomposition in southern Appalachian black locust and pine-hardwood stands: litter quality and nitrogen dynamics. Can J For Res 18:54–63

    Google Scholar 

  • Will GM (1967) Decomposition of Pinus radiata litter on the forest floor. 1. Changes in dry matter and nutrient content. N Z J For Sci 10:1030–1044

    CAS  Google Scholar 

  • Winkler JP, Cherry RS, Schelsinger WH (1996) The Q10 relationship of microbial respiration in a temperate forest soil. Soil Biol Biochem 28:1067–1072

    Article  CAS  Google Scholar 

  • Witkamp M (1966) Decomposition of leaf litter in relation to environment, microflora, and microbial respiration. Ecology 47:194–201

    Article  Google Scholar 

  • Yavitt JB, Fahey TJ (1986) Litter decay and leaching from the forest floor in Pinus contorta (lodgepole pine) ecosystems. J Ecol 74:525–545

    Google Scholar 

  • Zak DR, Holmes WE, MacDonald NW, Pregitzer KS (1999) Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci Soc Am 63:575–584

    CAS  Google Scholar 

  • Zhu W, Ehrenfeld JG (1996) The effects of mycorrhizal roots on litter decomposition, soil biota, and nutrients in a spodosolic soil. Plant Soil 179:109–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prescott, C. (2005). Decomposition and Mineralization of Nutrients from Litter and Humus. In: BassiriRad, H. (eds) Nutrient Acquisition by Plants. Ecological Studies, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27675-0_2

Download citation

Publish with us

Policies and ethics