Skip to main content

Large-Scale Inoculum Production of Arbuscular Mycorrhizal Fungi on Root Organs and Inoculation Strategies

  • Chapter
In Vitro Culture of Mycorrhizas

Part of the book series: Soil Biology ((SOILBIOL,volume 4))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Robson AD (1982) Infectivity of vesicular-arbuscular mycorrhizal fungi in agricultural soils. Aust J Agric Res 33:1049

    Google Scholar 

  • Abbott LK, Robson AD (1984) Colonization of the root systems of subterranean clover by three vesicular arbuscular mycorrhizal fungi. New Phytol 96:275–281

    Google Scholar 

  • Abbott LK, Robson AD (1991) Field management of VA mycorrhizal fungi. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 355–362

    Google Scholar 

  • Adholeya A (2003) Commercial production of AMF through industrial mode and its largescale application. In: Proc 4th Int Conf Mycorrhizae (ICOM4), Montréal

    Google Scholar 

  • Ahmad MH (1995) Compatibility and co-selection of vesicular arbuscular mycorrhizal fungi. New Phytol 99:257–265

    Google Scholar 

  • Allen EB (1988) Belowground spatial patterning: influence of root architecture, microorganisms and nutrients on plant survival in arid lands. In: Ellen EB (ed) The reconstruction of disturbed arid lands: an ecological approach. Westview Press, Boulder, pp 113–135

    Google Scholar 

  • Alten von H, Blal B, Dodd JC, Feldmann F, Vosatka (2002) Quality control of arbuscular mycorrhizal fungi inoculum in Europe. In: Gianinazzi S, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture. Birkhauser, Basel, pp 281–296

    Google Scholar 

  • Azcón R (1993) Growth and nutrition of a nodulated mycorrhizal and non-mycorrhizal Hedysarum coroarium as a result of treatments with fractions from a plant growth promoting rhizobacteria. Soil Biol Biochem 25:1037–1042

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms In: Allen MF (ed) Mycorrhizal functioning. Chapman & Hall, New York, pp 163–198

    Google Scholar 

  • Barea JM, Jeffries P (1995) Arbuscular mycorrhizas in sustainable soil plant systems. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 521–559

    Google Scholar 

  • Barea JM, Andrade G, Biaciotto V, Dowling D, Lohrke S, Bonfonte P, O’Gara F, Azcón-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for the biocontrol of soil-borne plant fungal pathogens. Appl Environ Microbiol 64:2304–2307

    PubMed  CAS  Google Scholar 

  • Barrows JB, Roncadori RW (1977) Endomycorrhizal synthesis by Gigaspora margarita in poinsettia. Mycologia 69:1173–1184

    Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular arbuscular mycorrhizal formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and roots exudates in vesicular arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2230–2325

    Google Scholar 

  • Bécard G, Piché Y (1992) Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma 174:62–68

    Google Scholar 

  • Bhat P, Kaveriappa KM (1998) Effect of AM Fungi on growth and nutrient uptake in some endemic forest tree species of the Western Ghat Forests of Karnataka, India. In: Proc 2nd Int Conf Mycorrhizae (ICOM2), Uppsala

    Google Scholar 

  • Bhattacharya S, Bagyaraj DJ (2002) Effectiveness of arbuscular mycorrhizal fungal isolates on Arabica coffee (Coffea Arabica L.). Biol Agric Hortic 20:125–131

    Google Scholar 

  • Bi YL, Li XL, Christie P, Hu ZQ, Wong MH (2003) Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Chemosphere 50:863–869

    PubMed  CAS  Google Scholar 

  • Bianciotto V, Bandi C, Minerde D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic fungus itself harbors obligatory intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    PubMed  CAS  Google Scholar 

  • Bianciotto V, Perotto S, Ruiz-Lozano JM, Bonfonte P (2002) Arbuscular mycorrhizal fungi and soil bacteria: from cellular investigations to biotechnological perspectives. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandker K (eds) Mycorrhizal technology in agriculture. Birkhauser, Basel, pp 19–31

    Google Scholar 

  • Bildusas IJ, Pfleger FL, Stewart EL, Dixon RK (1986) Response of Bromus inermis inoculated with Glomus fasciculatum to potassium fertilization and drought stress. Plant Soil 95:441–444

    CAS  Google Scholar 

  • Brown RW, Schultz RC, Kormanik PP (1981) Response of vesicular-arbuscular Glomus etunicatus endomycorrhizal sweetgum seedlings Liquidambar styraciflua to three nitrogen fertilizers — ammonium sulfate, ammonium nitrate, and potassium nitrate. For Sci 27:413–420

    Google Scholar 

  • Daft MJ (1983) The influence of mixed inocula on endomycorrhizal development. Plant Soil 71:331–337

    Article  Google Scholar 

  • Daft MJ, Nicolson TH (1974) Arbuscular mycorrhizas in plants colonizing coal wastes in Scotland. New Phytol 73:1129–1132

    Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1996) In vitro mass production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242

    Google Scholar 

  • Declerck S, D’Or D, Cranenbrouck S, Le Boulengé E (2001) Modelling the sporulation dynamics of arbuscular mycorrhizal fungi in monoxenic culture. Mycorrhiza 11:225–230

    Google Scholar 

  • Dehne HW (1982) Interaction between vesicular arbuscular mycorhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • De Souza FA, Berbara RLL (1999) Ontogeny of Glomus clarum in Ri T-DNA transformed roots. Mycologia 91:343–350

    Google Scholar 

  • Diop TA, Plenchette C, Strullu DG (1994) Dual axenic culture of sheared root inocula of vesicular arbuscular mycorrhizal fungi associated with tomato roots. Mycorrhiza 5:17–22

    Article  Google Scholar 

  • Douds DD Jr (2002) Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and re-supply of glucose to the mycorrhiza. Mycorrhiza 12:163–167

    Article  PubMed  CAS  Google Scholar 

  • Douds DD, Reider C (2003) Inoculation with mycorrhizal fungi increases the yield of green peppers in a high P soil. Biol Agric Hort 21:91–102

    Google Scholar 

  • Douds DD, Gadkar V, Adholeya A (2000) Mass production of VAM fungus biofertilizer. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer, Dordrecht, pp 197–215

    Google Scholar 

  • Estaun V, Camprubi A, Calvet C, Pinochet J (2003) Nursery and field response of olive trees inoculated with two arbuscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. J Am Soc Hortic Sci 128:767–775

    Google Scholar 

  • Fagbola O, Osonubi O, Mulongoy K (1998) Growth of cassava cultivar TMS 30572 as affected by alley-cropping and mycorrhizal inoculation. Biol Fertil Soil 27:9–14

    Google Scholar 

  • Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sprocarps of Glomus mosseae. Symbiosis 24:1–12

    Google Scholar 

  • Finlay RD (1985) Interactions between soil micro-arthropods and endomycorrhizal associations of higher plants. In: Fitter AH, Atkinson D (eds) Ecological interactions in soil. British Ecological Society, Oxford, pp 319–31

    Google Scholar 

  • Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Gadkar V, Adholeya A (2000) Intraradical sporulation of AM Gigaspora margarita in long-term axenic cultivation in Ri T-DNA carrot root. Mycol Res 104:716–721

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A, Mukerji KG (2000) On-farm production of VAM inoculum and vegetable crops in marginal soil amended with organic matter. Trop Agric 77:21–26

    Google Scholar 

  • Gemma JN, Koske RE, Carreiro M (1989) Seasonal dynamics of selected species of VA mycorrhizal fungi in a sand dune. Mycol Res 92:317–321

    Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of vesicular arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Hamel C (1996) Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture. Agric Ecosyst Environ 60:197–210

    Google Scholar 

  • Hayman DS, Stovold GE (1979) Spore populations and infectivity of vesicular-arbuscular mycorrhizae fungi in New SouthWales. Aust J Bot 27:227–234

    Article  Google Scholar 

  • Hilderbrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    Google Scholar 

  • Hodge A (2000) Microbial ecology of arbuscular mycorrhiza. FEMS Microbiol Ecol 32:91–96

    PubMed  CAS  Google Scholar 

  • Ianson DC, Linderman RG (1993) Variation in the response of nodulating pigeonpea (Cajanus cajan) to different isolates of mycorrhizal fungi. Symbiosis 15:105–119

    Google Scholar 

  • Ikram A, Mahmud AW, Chong K, Faizah AW (1992) Growth-responses of Calopogonium-Caeruleum to dual inoculation with vesicular-arbuscular mycorrhizal fungi and bradyrhizobia. Field Crop Res 31:131–144

    Google Scholar 

  • Isobe K, Tsuboki Y (1998) The relationship between growth promotion by arbuscular mycorrhizal fungi and root morphology and phosphorus absorption in gramineous and leguminous crops. Jpn J Crop Sci 67:347–352

    CAS  Google Scholar 

  • Jacquot EV, Tuinen D, Gianinazzi S, Gianinazzi-Pearson V (2000) Monitoring species of arbuscular mycorrhizal fungi in plant and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant Soil 226:179–188

    Article  CAS  Google Scholar 

  • Jakobsen I (1986) Vesicular-arbuscular mycorrhiza in field-grown crops. III. Mycorrhizal infection and rates of phosphorus inflow in pea plants. New Phytol 104:573–581

    Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    PubMed  CAS  Google Scholar 

  • Jasper DA (1994) Bioremediation of agricultural and forestry soils with symbiotic microorganisms. Aust J Soil Res 32:1301–1319

    Article  Google Scholar 

  • Jeffries P, Spyropoulos T, Vardavarkis E (1988) Vesicular-arbuscular mycorrhizal status of various crops in different agricultural soils of northern Greece. Biol Fert Soil 5:333–337

    Google Scholar 

  • Jolicoeur M, Williams RD, Chavarie C, Jortin JA, Archambault J (1999) Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in a airlift bioreactor. Biotechnol Bioeng 63:224–232

    Article  PubMed  CAS  Google Scholar 

  • Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant Soil 253:287–292

    Article  CAS  Google Scholar 

  • Kloepper JM, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Gibert-Clarey T (ed) Proc 4th Int Conf Plant Pathogenic Bacteria, Station de Pathologie Végétale et Phytobactériologie, Angers, France, pp 879–882

    Google Scholar 

  • Koch M, Tanami Z, Bodani H, Wininger S, Kapulnik Y (1997) Field application of vesicular-arbuscular mycorrhizal fungi improved garlic yield in disinfected soil. Mycorrhiza 7:47–50

    Article  Google Scholar 

  • Koske RE (1987) Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia 79:55–68

    Google Scholar 

  • Linderman RG (1986) Managing rhizosphere microorganisms in the production of horticultural crops. Hortic Sci 21:1299–1302

    Google Scholar 

  • Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASM, CSSA, SSSA, Madison, WI, pp 45–70

    Google Scholar 

  • MÃ¥rtensson AM, Carlgren K (1994) Impact of phosphorus fertilization on VAM diaspores in two Swedish long-term field experiments. Agric Ecosyst Environ 47:327–334

    Google Scholar 

  • Matsubara Y, Harada T, Yakuwa T (1994) Effect of vesicular-arbuscular mycorrhizal fungi inoculation on seedling growth in several species of vegetable crops. J Jpn Soc Hortic Sci 63:619–628

    Google Scholar 

  • Matsubara Y, Kayukawa Y, Yano M, Fukui H (2000) Tolerance of asparagus seedlings infected with arbuscular mycorrhizal fungus to violet root rot caused by Helicobasidium mompa. J Jpn Soc Hortic Sci 69:552–556

    Google Scholar 

  • McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94:120–122

    Google Scholar 

  • Medina A, Probanza A, Gutierrez Manero, Azcon R (2003) Interactions of arbuscular mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl Soil Ecol 22:15–28

    Article  Google Scholar 

  • Mendoza J, Borie F (1998) Effect of Glomus etunicatum inoculation on aluminum, phosphorus, calcium, and magnesium uptake of two barley genotypes with different aluminum tolerance. Comm Soil Sci Plant Anal 29:681–695

    CAS  Google Scholar 

  • Merryweather J, Fetter AH (1998) The arbuscular mycorrhizal fungi of Hyacinthoides nonscripta. I Diversity of fungal taxa. New Phytol 138:117–12

    Google Scholar 

  • Millner PD, Kitt DG (1992) The Beltsville method for soilless production of vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 2:9–15

    Article  Google Scholar 

  • Morton J, Bentivenga SP, Beever JD (1995) Discovery, measurement, and interpretation of diversity in arbuscular mycorrhizal fungi (Glomales, Zygomycetes). Can J Bot 73:S25–S32

    Google Scholar 

  • Mosse B (1975) Specificity in VA mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 469–484

    Google Scholar 

  • Mosse B, Hepper CM (1975) Vesicular arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223

    Article  Google Scholar 

  • Perron F, Légère A, Tremblay G, Simard RR, Angers D, Hamel C (2001) Crop and weed response to nutrient source, tillage and weed control method in a corn-soybean rotation. Can J Plant Sci 81:561–571

    Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983a) Growth responses of several plant species to mycorrhizae in a soil of low fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    CAS  Google Scholar 

  • Plenchette C, Furlan V, Fortin JA (1983b) Responses of endomycorrhizal plants grown in calcined montmorillonite clay to different levels of phosphorus. I. Effect on growth and mycorrhizal development. Can J Bot 61:1377–1383

    CAS  Google Scholar 

  • Plenchette C, Declerck S, Diop TA, Strullu DG (1996) Infectivity of monoaxenic subcultures of the arbuscular mycorrhizal fungus Glomus versiforme associated with Ri-T DNA transformed carrot root. Appl Microb Biotechnol 46:545–548

    CAS  Google Scholar 

  • Probanza A, Mateos JL, Lucas JA, Ramos B, de Felipe MR, Gutierrez manero FJ (2001) Effects of inoculation with PGPR bacillus and Pisolithus tinctorious on Pinus pinea L. growth, bacteria rhizosphere colonization and mycorrhizal infection. Microb Ecol 41:140–148

    PubMed  CAS  Google Scholar 

  • Redecker D, Thierfelder H, Werner D (1995) A new cultivation system for arbuscular mycorrhizal fungi on glass beads. J Appl Bot Ang Bot 69:183–188

    Google Scholar 

  • Richter BS, Stutz JC (2002) Mycorrhizal inoculation of big sacaton: implications for grassland restoration of abandoned agricultural fields. Restor Ecol 10:607–616

    Article  Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of VAM fungi on the response of cucumber to salt stress. Environ Exp Bot 31:313–318

    Article  Google Scholar 

  • Ryan MH, Angus JF (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250:225–239

    Article  CAS  Google Scholar 

  • Scagel CF (2004) Soil pasteurization and inoculation with Glomus intraradices alters flower production and bulb composition of Zephyranthes spp. J Hortic Sci Biotech 78:798–812

    Google Scholar 

  • Sharma MP, Gaur A, Bhatia NP, Adholeya A (1996) Growth responses and dependence of Acacia nilotica var. cupriciformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. Mycorrhiza 6:441–446

    Article  Google Scholar 

  • Shrestha YH, Ishii T, Matsumoto I, Kadoya K (1996) Effects of vesicular-arbuscular mycorrhizal fungi on satsuma mandarin tree growth and water stress tolerance and on fruit development and quality. J Jpn Soc Hortic Sci 64:801–807

    Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. GTZ Technical Cooperation, Echborn, Germany

    Google Scholar 

  • Soderberg KH, Olsson PA, Baath E (2002) Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonization. FEMS Microbiol Ecol 40:223–231

    CAS  Google Scholar 

  • Strullu DG, Plenchette C (1991) The entrapment of Glomus sp in alginate beads and their use as root inoculum. Mycol Res 95:1194–1196

    Article  Google Scholar 

  • Strullu GD, Romand C (1986) Méthodes d’obtention d’endomycorrhizes à vésicules et arbuscules en conditions axéniques. C R Acad Sci Paris 303:245–250

    Google Scholar 

  • Strullu GD, Romand C (1987) Culture axénique de vésicules isolées à partir d’endomycorrhizes et réassociation in vitro à des racines de tomate. C R Acad Sci Paris 305:15–19

    Google Scholar 

  • Strullu DG, Diop TA, Plenchette C (1997) Réalisation de collections in vitro de Glomus intraradices (Schenck et Smith) et de Glomus versiforme (Karsten et Berch) et proposition d’un cycle développement. C R Acad Sci Paris 320:41–47

    Google Scholar 

  • Sukarno N, Smith FA, Smith SE, Scott ES (1996) The effect of fungicides on vesicular-arbuscular mycorrhizal symbiosis II. The effects on area of interface and efficiency of P uptake and transfer to plant. New Phytol 25:139–147

    Google Scholar 

  • Taylor J, Harrier L (2000) A comparison of nine species of arbuscular mycorrhizal fungi on the development and nutrition of micropropagated Rubus idaeus L. Cv. Glen Prosen (red raspberry). Plant Soil 225:53–61

    Article  CAS  Google Scholar 

  • Tepfer DA (1989) Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology and evolution. In: Kousugg T, Nester EW (eds) Plant microbe interactions. Molecular and genetic perspectives. Mc Graw-Hill, New York, pp 294–342

    Google Scholar 

  • Thompson JP (1994) Inoculation with vesicular-arbuscular mycorrhizal fungi from cropped soil overcomes long-fallow disorder of linseed (Linum-Usitatissimum L) by improving P and Zn uptake. Soil Biol Biochem 26:1133–1143

    Article  CAS  Google Scholar 

  • Tiwari P, Adholeya A (2002) In vitro co-culture of two AMF isolates Gigaspora margarita and Glomus intraradices on Ri T-DNA transformed roots. FEMS Microbiol Lett 206:39–43

    Article  PubMed  CAS  Google Scholar 

  • Tiwari P, Adholeya A (2003) Host dependent differential spread of Glomus intraradices on various Ri T-DNA transformed roots in vitro. Mycol Prog 2:171–177

    Google Scholar 

  • Tiwari P, Prakash A, Adholeya A (2002) Commercialization of arbuscular mycorrhizal fungi. In: Arora (ed) Handbook of fungal biotechnology. Marcel Dekker, New York

    Google Scholar 

  • Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhizal development by inoculation with phosphate-solubilizing rhizobacteria to improve rock phosphate bio-availability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  PubMed  Google Scholar 

  • Toro M, Azcón R, Barea JM (1998) The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotypes, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    Article  CAS  Google Scholar 

  • Utkhede RS, Li TSC, Smith EM (1992) The effect of Glomus mosseae and Enterobacter-aerogenes on apple seedlings grown in apple replant disease soil. J Phytopathol 135:281–288

    Google Scholar 

  • Verma A, Adholeya A (1996) Cost-economics of existing methodologies for inoculum production of vesicular-arbuscular mycorrhizal fungi. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer, Dordrecht, pp 179–194

    Google Scholar 

  • Werner MR, Kluson RA, Gliessman SR (1991) Colonization of strawberry roots by Va mycorrhizal fungi in agroecosystems under conventional and transitional organic management. Biol Agric Hort 7:139–151

    Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to coinoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188

    Article  CAS  Google Scholar 

  • Young JL, Davis EA, Rose SL (1985) Endomycorrhizal fungi in breeder wheats and Triticale cultivars field-grown on fertile soil. Agron J 77:219–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adholeya, A., Tiwari, P., Singh, R. (2005). Large-Scale Inoculum Production of Arbuscular Mycorrhizal Fungi on Root Organs and Inoculation Strategies. In: Declerck, S., Fortin, J.A., Strullu, DG. (eds) In Vitro Culture of Mycorrhizas. Soil Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27331-X_17

Download citation

Publish with us

Policies and ethics