Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 55))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hortic 465:41–49

    Google Scholar 

  • Abbott AG, Lecouls AC, Wang Y, Georgi L, Scorza R, Reighard G (2002) Peach: The model genome for Rosaceae genomics. Acta Hortic 592:199–203

    Google Scholar 

  • Aranzana MJ, Garcia-Mas J, Carbo J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92

    Article  Google Scholar 

  • Aranzana MJ, Carbo J, Arús P (2003a) Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet 106:1341–1352

    PubMed  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Ascasibar J, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arùs P (2003b) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  Google Scholar 

  • Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Google Scholar 

  • Arús P, Dirlewanger E, Quarta R, Tobutt K, J Ballester, Boskovic R, Dettori MT, de Vicente C, Jàuregui B, Joobeur T, Russell K, Verde I, Viruel M (1999) Location of 20 major genes of peach, almond and cherry on the Prunus linkage map. Plant and animal genome VII. San Diego, 17–21 Jan 1999)

    Google Scholar 

  • Arús P, Mnejja M, Dirlewanger E, Esmenjaud D (2003) High marker density around the peach nematode resistance I genes. Proceedings of the 1st international symposium on rootstock for deciduous fruit tree species, ISHS Fruit Section. Acta Hortic (in press)

    Google Scholar 

  • Asero R, Mistrello G, Roncarolo DC, de Vries S, Gautier MF, Ciurana CLF, Verbeek E, Mohammadi T, Knul-Brettlova V, Akkerdaas JH, Bulder I, Aalberse RC, van Ree R (2000) Lipid transfert protein: a pan allergen in plant-derived foods that is highly resistant to pepsin digestion. Int Arch Allergy Immunol 122:20–32

    Article  Google Scholar 

  • Bailey JS, French AP (1949) The inheritance of certain fruit and foliage characters in the peach. Mass Agric Expt Sta Bull p 452

    Google Scholar 

  • Baird WV, Estager AS, Wells J (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Am Soc Hort Sci 119:1312–1316

    Google Scholar 

  • Bergougnoux V, Claverie M, Bosselut N, Lecouls AC, Esmenjaud D, Dirlewanger E, Salesses G (2002) Marker-assisted selection of the Ma gene from Myrobalan Plum for a complete-spectrum root-knot nematode (RKN) resistance in Prunus rootstocks. Acta Hortic 592 (ISHS 2002):223–228

    Google Scholar 

  • Blake MA (1932) The J H Hale peach as a parent in peach crosses. Proc Am Soc Hortic Sci 29:131–136

    Google Scholar 

  • Blake MA (1937) Progress in peach breeding. Proc Am Soc Hortic Sci 35:49–53

    Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    PubMed  Google Scholar 

  • Botton A, Begheldo M, Rasori A, Bonghi C, Tonutti P (2002) Factors affecting gene expression of lipid transfert protein (LTP), the major allergen of peach fruit. Acta Hortic 592:237–243

    Google Scholar 

  • Brenna O, Pompei C, Ortolani C, Pravettoni V, Farioli L, Pastorello EA (2000) Technological processes to decrease the allergenicity of peach juice and nectar. J Agric Food Chem 48:493–497

    PubMed  Google Scholar 

  • Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Hered 81:68–71

    Google Scholar 

  • Byrne DH (2002) Peach breeding trends: a world wide perspective. Acta Hortic 592:49–59

    Google Scholar 

  • Byrne DH, Nikolic AN, Burns EE (1991) Variability in sugars, acids, firmness, and colour characteristics of 12 peach genotypes. J Am Soc Hortic Sci 116:1004–1006

    Google Scholar 

  • Cantini C, Iezzoni AF, Lamboy WF, Bortizki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Am Soc Hortic Sci 126:205–209

    Google Scholar 

  • Chaparro JX, Werner DJ, O'Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological, isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  Google Scholar 

  • Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004) Fine Mapping and Chromosome Landing at the Root-Knot Nematode Resistance Locus Ma from Myrobalan Plum Using a Large-Insert BAC DNA Library. Theor Appl Genet (in press)

    Google Scholar 

  • Connors CH (1920) Peach breeding — a summary of results. Proc Am Soc Hortic Sci 17:108–115

    Google Scholar 

  • Connors CH (1922) Inheritance of foliar glands of the peach. Proc Am Soc Hortic Sci 18:20–26

    Google Scholar 

  • Dabov S (1983) Inheritance of peach resistance to powdery mildew. III. Leaf resistance in F1 of J.H. Hale × nectarine Ferganensis 2. Genet Plant Breed 16:146–150

    Google Scholar 

  • Dennis FG (1996) A physiological comparison of seed and bud dormancy. In: Lang GA (ed) Plant dormancy. CAB International, Wallingford

    Google Scholar 

  • Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs and morphological markers. Genome 44:783–790

    Article  PubMed  Google Scholar 

  • Dirlewanger E, Bodo C (1994) Molecular genetic mapping of peach. Euphytica 77:101–103

    Google Scholar 

  • Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach (Prunus persica (L.) Batsch) × Prunus davidiana hybrids. Theor Appl Genet 93:909–919

    Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guy A, Monet R (1998) Genetic linkage map of peach (Prunus persica (L.) Batsch) using morphological and molecular markers. Theor Appl Genet 97:888–895

    Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L) Batsch). Theor Appl Genet 98:18–31

    Article  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  PubMed  Google Scholar 

  • Dirlewanger E, Kleinhentz M, Claverie M, Lecouls AC, Bosselut N, Voisin R, Poessel JL, Faurobert M, Arús P, Gomez-Aparisi J, Xiloyannis C, Di Vito M, Esmenjaud D (2003a) Breeding for a new generation of Prunus rootstocks: an example of marker-assisted selection. Proceedings of the 1st international symposium on rootstock for deciduous fruit tree species, ISHS Fruit Section. Acta Hortic (in press)

    Google Scholar 

  • Dirlewanger E, Poizat C, Cosson P, Lafargue B, Kleinhentz M, Claverie M, Bosselut N, Voisin R, Esmenjaud D, Laigret F (2003b) Genetic linkage maps of myrobalan plum and of an almond-peach hybrid-location of root-knot nematode resistance genes. 7th international congress of plant molecular biology, ISPMB, Barcelona, 23–28 June 2003

    Google Scholar 

  • Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J Am Soc Hortic Sci 125:76–80

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Pinochet J, Salesses G (1994) Inter-and intraspecific resistance variability in Myrobalan plum, peach, and peach-almond rootstocks using 22 root-knot nematode populations. J Am Soc Hortic Sci 119:94–100

    Google Scholar 

  • Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C (2002a) Isolation and characterisation of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Physiol Plant 114:259–270

    Article  PubMed  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002b) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  PubMed  Google Scholar 

  • Fideghelli C, Della Strada G, Grassi F, Morico G (1998) The peach industry in the world: present situation and trend. Acta Hortic 465:29–40

    Google Scholar 

  • Foolad MR, Arulsekar S, Becerra V, Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91:262–269

    Google Scholar 

  • Foulongne M, Pascal T, Arús P, Kervella J (2003a) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107:227–238

    PubMed  Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003b) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    Article  Google Scholar 

  • Génard M, Bruchou C (1992) Multivariate analysis of within-tree factors accounting for the variation of peach fruit quality. Sci Hort 52:37–51

    Article  Google Scholar 

  • Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Iñigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151–1158

    Article  PubMed  Google Scholar 

  • Hansche P (1988) Two genes that induce brachytic dwarfism in peach. Hortic Sci 23:604–606

    Google Scholar 

  • Hesse CO (1975) Peach. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue Univ Press, West Lafayette, Indiana, pp 325–326

    Google Scholar 

  • Hurtado MA, Romero C, Vilanova S, Abbott AG, Llácer G, Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armaniaca L.), and mapping of PPV (sharka) resistance. Theor Appl Genet 105:182–191

    Article  PubMed  Google Scholar 

  • Jáuregui B (1998) Localizacion de marcadores moleculares ligados a caracteres agronomicos en un cruzamiento interespecifico almendro × melocotonero. PhD Thesis. University of Barcelona, Spain.

    Google Scholar 

  • Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176

    Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041

    Google Scholar 

  • Joobeur T, Periam N, de Vicente MC, King GJ, Arús P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655

    PubMed  Google Scholar 

  • Lambert P, Hagen LS, Arús P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond ‘Texas’ × peach ‘Earlygold’ reference map for Prunus. Theor Appl Genet 108:1120–1130

    Article  PubMed  Google Scholar 

  • Lammerts WE (1945) The breeding of ornamental edible peaches for mild climates I. Inheritance of tree and flower characters. Am J Bot 30:707–711

    Google Scholar 

  • Lecouls AC, Salesses G, Minot JC, Voisin R, Bonnet A, Esmenjaud D (1997) Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor Appl Genet 95:1325–1334

    Article  Google Scholar 

  • Lecouls AC, Rubio-Cabetas MJ, Minot JC, Voisin R, Bonnet A, Salesses G, Dirlewanger E, Esmenjaud D (1999) RAPD and SCAR markers linked to the Ma1 root-knot nematode resistance gene in Myrobalan plum (Prunus cerasifera Ehr.). Theor Appl Genet 99:328–335

    Article  Google Scholar 

  • Lecouls AC, Reighard GL, Abbott AG, Dirlewanger E (2002) Physical mapping and integration of QTL intervals involved in fruit quality on peach fruit variety and rootstock molecular maps. Proc 5th IS Peach Acta Hortic 592 (ISHS 2002):273–278

    Google Scholar 

  • Lecouls AC, Bergougnoux V, Rubio-Cabetas MJ, Bosselut N, Voisin R, Bonnet A, Salesses G, Dirlewanger E, Esmenjaud D (2004) Marker-assisted selection of Prunus rootstocks for the wide-spectrum root-knot nematode resistance conferred by the Ma gene from Myrobalan plum (Prunus cerasifera). Mol Breed 13:113–124

    Article  Google Scholar 

  • Le Dantec L, Chagné D, Pot D, Cantin O, Garnier-Géré P, Bedon F, Frigerio JM, Chaumeil P, Léger P, Garcia V, Laigret F, de Daruvar A, Plomion C (2004) Automated SNP Detection in Expressed Sequence Tags: Statistical Considerations and Application to Maritime Pine Sequences. Plant Mol Biol (in press)

    Google Scholar 

  • Lesley JW (1939) A genetic study of saucer fruit shape and other characters in the peach. Proc Am Soc Hortic Sci 38:218–222

    Google Scholar 

  • Lopes MS, Sefc KM, Laimer M, da Camara Machado A (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26

    Article  Google Scholar 

  • Lu ZX, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41:199–207

    Article  Google Scholar 

  • Massonié G, Monet R, Bastard Y, Grasselly C (1982) Résistance au puceron vert du pècher, Myzus persicae Sulzer (Homoptera aphididae) chez Prunus persica (L.) Batsch et d'autres espèces de Prunus. Agronomie 2:63–70

    Google Scholar 

  • Mehlenbacher SA, Scorza R (1986) Inheritance of growth habit in progenies of compact Redhaven peach. Hortscience 21:124–126

    Google Scholar 

  • Moing A, Svanella L, Rolin D, Gaudillere M, Gaudillere JP, Monet R (1998) Compositional changes during the fruit development of two peach cultivars differing in juice acidity. J Am Soc Hortic Sci 123:770–775

    Google Scholar 

  • Monet R (1967) A contribution to the genetics of peaches (in French). Ann Amelior Plant 17:5–11

    Google Scholar 

  • Monet R (1979) Genetic transmission of the ‘non-acid’ character. Incidence on selection for quality. Eucarpia symposium tree fruit breeding. INRA, Angers, pp 273–276

    Google Scholar 

  • Monet R, Guye A, Roy M, Dachary N (1996) Peach mendelian genetics: a short review of results. Agronomie 16:321–329

    Google Scholar 

  • Pangborn (1963) Relative taste intensities of selected sugars and organic acids. J Food Sci 28:726–733

    Google Scholar 

  • Pascal T, Kervella J, Pfeiffer F, Sauge MH, Esmenjaud D (1998) Evaluation of the interspecific progeny Prunus persica cv Summergrand × Prunus davidiana for disease resistance and some agronomic features. Acta Hortic 465:185–191

    Google Scholar 

  • Pastorello EA, Farioli J, Pravettoni V, Ortolani C, Ispano M, Monza M, Broglio C, Scibola E, Ansaloni R, Incorvaia C, Conti A (1999) The major allergen of peach (Prunus persica) is a lipid transfer protein. J Allergy Clin Immunol 103:520–526

    PubMed  Google Scholar 

  • Quarta R, Dettori MT, Verde I, Gentile A, Broda Z (1998) Genetic analysis of agronomic traits and genetics linkage mapping in a BC1 peach population using RFLPs and RAPDs. Acta Hortic 465:51–59

    Google Scholar 

  • Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hortic 521:233–241

    Google Scholar 

  • Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 91:964–971

    Google Scholar 

  • Ramming DW, Tanner O (1983) Nemared peach rootstock. HortScience 18:376

    Google Scholar 

  • Rodriguez J, Crespo JF, Lopez-Rubio A, de la Cruz Bertolo J, Ferrando-Vivas P, Vives R, da Roca P (2000) Clinical cross-reactivity among foods of the Rosaceae family. J Allergy Clin Immunol 106:183–189

    PubMed  Google Scholar 

  • Rodriguez J, Sherman WB, Scorza R, Wisniewski M, Okie WR (1994) 'Evergreen’ peach, its inheritance and dormance behavior. J Am Soc Hortic Sci 119:789–792

    Google Scholar 

  • Rothan C, Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R (1999) Isolation of a cDNA encoding a metallothionein-like protein (Accession NoAJ243532) expressed during peach fruit development. Plant Physiol 121:311 (Electronic plant gene register)

    Article  PubMed  Google Scholar 

  • Sánchez-Monge R, Lombardero M, Garcia-Sellé FJ, Barber D, Salcedo G (1999) Lipid-transfer proteins are relevant allergens in fruit allergy. J Allergy Clin Immunol 103:514–519

    PubMed  Google Scholar 

  • Sauge MH, Kervella J, Pascal T (1998) Settling behavior and reproductive potential of the green peach aphid Myzus persicae on peach varieties and a related wild Prunus. Entomol Exp Appl 89:233–242

    Article  Google Scholar 

  • Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Am Soc Hortic Sci 110:547–552

    Google Scholar 

  • Scorza R, Melnicenco L, Dang P, Abbott AG (2002) Testing a microsatellite marker for selection of columnar growth habit in peach [Prunus persica (L.) Batsch]. Acta Hortic 592:285–289

    Google Scholar 

  • Scott DH, Cullinan FP (1942) The inheritance of wavy-leaf character in the peach. J Hered 33:293–295

    Google Scholar 

  • Scott DH, Weinberger JH (1944) Inheritance of pollen sterility in some peach varieties. Proc Am Soc Hort Sci 45:229–232

    Google Scholar 

  • Sharpe RH, Hesse CO, Lownsberry BF, Perry VG, Hansen CJ (1970) Breeding peaches for root knot nematode resistance. J Am Soc Hortic Sci 94:209–212

    Google Scholar 

  • Smykov VK, Ovcharenko GV, Perfilyeva ZN, Shoferistov EP (1982) Estimation of the peach hybrid resources by its mildew resistance against the infection background. Byull Gos Nikitsh Bot Sada 88:74–80

    Google Scholar 

  • Sosinski B, Sossey-Alaoui K, Rajapakse S, Glassmoyer K, Ballard R, Abbott A, Lu X, Baird WV, Reighard G, Tabb A, Scorza R (1998) Use of AFLP and RFLP markers to create a combined linkage map in peach (Prunus persica (L.) Batsch) for use in marker assisted selection. Acta Hortic 465:61–68

    Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 97:1034–1041

    Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    Article  PubMed  Google Scholar 

  • Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291–297

    Google Scholar 

  • Vilanova S, Romero C, Abbott AG, Llácer G, Badenes ML (2003) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet 107:239–247

    Article  PubMed  Google Scholar 

  • Viruel MA, Messeguer R, de Vicente MC, Garcia-Mas J, Puigdomènech P, Vargas F, Arús P (1995) A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet 91:964–971

    Article  Google Scholar 

  • Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervella J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hortic 465:79–88

    Google Scholar 

  • Wang D, Karle R, Brettin TS, Iezzoni AF (1998) Genetic linkage map in sour cherry using RFLP markers. Theor Appl Genet 97:1217–1224

    Article  Google Scholar 

  • Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544

    Google Scholar 

  • Wang Y, Garay L, Reighard GL, Geargi LL, Abbott AG, Scorza R (2002) Development of bacterial artificial chromosome contigs in the evergrowing gene region in peach. Acta Hortic 592:183–189

    Google Scholar 

  • Warburton ML, Becerra-Velasquez VL, Goffreda JC, Bliss FA (1996) Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach. Theor Appl Genet 93:920–925

    Article  Google Scholar 

  • Weinberger JH, Marth PC, Scott DH (1943) Inheritance study of root knot nematode resistance in certain peach varieties. Proc Am Soc Hortic Sci 42:321–325

    Google Scholar 

  • Werner DJ, Creller MA (1997) Genetic studies in peach: inheritance of sweet kernel and male sterility. J Am Soc Hortic Sci 122:215–217

    Google Scholar 

  • Werner DJ, Creller MA, Chaparro JX (1998) Inheritance of blood-flesh trait in peach. Hortic Sci 33:1243–1246

    Google Scholar 

  • Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278

    Article  Google Scholar 

  • Yamamoto T, Mochida K, Imai T, Shi Z, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–301

    Article  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 34:479–501

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dirlewanger, E., Arús, P. (2004). Markers in Fruit Tree Breeding: Improvement of Peach. In: Lörz, H., Wenzel, G. (eds) Molecular Marker Systems in Plant Breeding and Crop Improvement. Biotechnology in Agriculture and Forestry, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26538-4_17

Download citation

Publish with us

Policies and ethics