Skip to main content

Quaternion Two-Sided Matrix Equations with Specific Constraints

  • Chapter
  • First Online:
Matrix and Operator Equations and Applications

Abstract

This chapter is devoted to the survey of quaternion restricted two-sided matrix equation AXB = D and approximation problems related with it. Unique solutions to the considered approximation matrix problems and the restricted quaternion two-sided matrix equations with specific constraints are expressed in terms of the core-EP inverse and the dual core-EP inverse, the MPCEP and ∗CEPMP inverses, and the DMP and MPD inverses. The MPCEP-∗CEPMP inverses and the DMP-MPD inverses are generalized inverses obtained by combining the Moore-Penrose (MP-)inverse with the core-EP (CEP-)inverse and the MP-inverse with the Drazin (D-)inverse, respectively. Several particular cases of these equations and approximation matrix problems are presented too. Cramer’s rules for solving these constrained quaternion matrix equations and approximation matrix problems with their particular cases are developed by using of noncommutative row-column determinants. As a consequence, Cramer’s rules for solving these constrained matrix equations with complex matrices are derived as well. Numerical examples are given to illustrate gained results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, L. S. (1995). Quaternionic quantum mechanics and quantum fields. New York: Oxford University Press

    MATH  Google Scholar 

  2. Aslaksen, H. (1996). Quaternionic determinants. The Mathematical Intelligencer, 18(3), 57–65

    MathSciNet  MATH  Google Scholar 

  3. Bai, Z. Z., Deng, B. Y., & Gao, H. Y. (2006). Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations. Numerical Linear Algebra with Applications, 13, 801–823

    MathSciNet  MATH  Google Scholar 

  4. Baksalary, M. O., & Trenkler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58(6), 681–697

    MathSciNet  MATH  Google Scholar 

  5. Bapat, B. R., K.P.S. Bhaskara, & Manjunatha Prasad, K. (1990). Generalized inverses over integral domains. Linear Algebra and Its Applications, 140, 181–196

    MathSciNet  MATH  Google Scholar 

  6. Bapat, B. R. (1994). Generalized inverses with proportional minors. Linear Algebra and Its Applications, 211, 27–35

    MathSciNet  MATH  Google Scholar 

  7. Ben-Israel, A., & Grevile, T. N. E. (2003). Generalized inverses, theory and applications (2nd ed.). Canadian Mathematical Society. New York: Springer

    Google Scholar 

  8. Le Bihan, N., & Sangwine, J. S. (2003). Quaternion principal component analysis of color images. In IEEE International Conference on Image Processing (ICIP), Barcelona, Spain

    Google Scholar 

  9. Cai, J., & Chen, G. (2007). On determinantal representation for the generalized inverse \( {A}_{T,S}^{(2)} \) and its applications. Numerical Linear Algebra with Applications, 14, 169–182

    Google Scholar 

  10. Caiqin, S., & Guolian, C. (2012). On solutions of quaternion matrix equations XF − AX = BY  and \( XF-\tilde{A}= BY \). Acta Mathematica Scientia, 32B(5), 1967–1982

    Google Scholar 

  11. Campbell, L. S., & Meyer, D. C. (1979). Generalized inverses of linear transformations. London: Pitman

    MATH  Google Scholar 

  12. Chen, L. J., Mosić, D., & Xu, Z. S. (2020). On a new generalized inverse for Hilbert space operators. Quaestiones Mathematicae, 43, 1331–1348

    MathSciNet  MATH  Google Scholar 

  13. Chu, E. K. (1987). Singular value generalized singular value decompositions and the solution of linear matrix equations. Linear Algebra and Its Applications, 88/89, 83–98

    Google Scholar 

  14. Cohen, N., & De Leo, S. (2000). The quaternionic determinant. Electronic Journal of Linear Algebra, 7, 100–111

    Google Scholar 

  15. De Leo, S., & Scolarici, G. (2000). Right eigenvalue equation in quaternionic quantum mechanics. Journal of Physics A, 33, 2971–2995

    Google Scholar 

  16. Fan, J. (2003). Determinants and multiplicative functionals on quaternion matrices. Linear Algebra and Its Applications, 369, 193–201

    MathSciNet  MATH  Google Scholar 

  17. Fan, X., Li, Y., Liu, Z., & Zhao, J. (2022). Solving quaternion linear system based on semi-tensor product of quaternion matrices. Symmetry, 14, 1359

    Google Scholar 

  18. Ferreyra, E. D., Levis, E. F., & Thome, N. (2018). Revisiting the core EP inverse and its extension to rectangular matrices. Quaestiones Mathematicae, 41(2), 265–281

    MathSciNet  MATH  Google Scholar 

  19. Ferreyra, E. D., Levis, E. F., & Thome, N. (2018). Maximal classes of matrices determining generalized inverses. Applied Mathematics and Computation, 333, 42–52

    MathSciNet  MATH  Google Scholar 

  20. Gao, Y., & Chen, J. (2018). Pseudo core inverses in rings with involution. Communications in Algebra, 46(1), 38–50

    MathSciNet  MATH  Google Scholar 

  21. Gao, Y., Chen, J., & Patricio, P. (2021). Continuity of the core-EP inverse and its applications. Linear and Multilinear Algebra, 69(3), 557–571

    MathSciNet  MATH  Google Scholar 

  22. He, Z.-H., & Wang, Q.-W. (2013). A real quaternion matrix equation with applications. Linear and Multilinear Algebra, 61(6), 725–740

    MathSciNet  MATH  Google Scholar 

  23. Jiang, T., & Wei, M. (2003). Equality constrained least squares problem over quaternion field. Applied Mathematics Letters, 16, 883–888

    MathSciNet  MATH  Google Scholar 

  24. Jiang, T., Zhao, J., & Wei, M. (2008). A new technique of quaternion equality constrained least squares problem. Journal of Computational and Applied Mathematics, 216, 509–513

    MathSciNet  MATH  Google Scholar 

  25. Jiang, T., Zhang, Z., & Jiang, Z. (2018). A new algebraic technique for quaternion constrained least squares problems. Advances in Applied Clifford Algebras, 28, 14

    MathSciNet  MATH  Google Scholar 

  26. Khatri, G. C., & Mitra, K. S. (1976). Hermitian and nonnegative definite solutions of linear matrix equations. SIAM Journal on Applied Mathematics, 31, 579–585

    MathSciNet  MATH  Google Scholar 

  27. Krishnamurthy, V. E. (1978). Generalized matrix inverse approach for automatic balancing of chemical equations. International Journal of Mathematical Education in Science and Technology, 9, 323–328

    Google Scholar 

  28. Kyrchei, I. I. (2008). Cramer’s rule for quaternionic systems of linear equations. Journal of Mathematical Sciences, 155(6), 839–858

    MathSciNet  MATH  Google Scholar 

  29. Kyrchei, I. I. (2012). The theory of the column and row determinants in a quaternion linear algebra. In A.R. Baswell (Ed.), Advances in mathematics research (vol. 15, pp. 301–359). New York: Nova Sci. Publ.

    Google Scholar 

  30. Kyrchei, I. I. (2012). Determinantal representation of the Moore-Penrose inverse matrix over the quaternion skew field. Journal of Mathematical Sciences, 108(1), 23–33

    MathSciNet  Google Scholar 

  31. Kyrchei, I. I. (2014). Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations. Applied Mathematics and Computation, 238, 193–207

    MathSciNet  MATH  Google Scholar 

  32. Kyrchei, I. I. (2017). Determinantal representations of the Drazin and W-weighted Drazin inverses over the quaternion skew field with applications. In S. Griffin (Ed.) Quaternions: theory and applications (pp. 201–275). New York: Nova Sci. Publ.

    Google Scholar 

  33. Kyrchei, I. I. (2017). Determinantal representations of the quaternion weighted Moore-Penrose inverse and its applications. In A.R. Baswell (Ed.), Advances in mathematics research (vol. 23, pp. 35–96). New York: Nova Sci. Publ.

    Google Scholar 

  34. Kyrchei, I. I. (2018). Explicit determinantal representation formulas for the solution of the two-sided restricted quaternionic matrix equation. Journal of Applied Mathematics and Computing, 58(1–2), 335–365

    Google Scholar 

  35. Kyrchei, I. I. (2018). Cramer’s rules for Sylvester quaternion matrix equation and its special cases. Advances in Applied Clifford Algebras, 28(5), 90

    MathSciNet  MATH  Google Scholar 

  36. Kyrchei, I. I. (2019). Determinantal representations of general and (skew-)Hermitian solutions to the generalized Sylvester-type quaternion matrix equation. Abstract and Applied Analysis, 2019, ID 5926832, 14 p.

    Google Scholar 

  37. Kyrchei, I. I. (2019). Cramer’s Rules for Sylvester-type matrix equations. In I.I. Kyrchei (Ed.), Hot topics in Linear Algebra (pp. 45–110). New York: Nova Sci. Publ.

    Google Scholar 

  38. Kyrchei, I. I. (2019). Determinantal representations of the quaternion core inverse and its generalizations. Advances in Applied Clifford Algebras, 29(5), 104

    MathSciNet  MATH  Google Scholar 

  39. Kyrchei, I. I. (2015). Cramer’s rule for generalized inverse solutions. In I.I. Kyrchei (Ed.), Advances in Linear Algebra research (pp. 79–132). New York: Nova Sci. Publ.

    Google Scholar 

  40. Kyrchei, I. I. (2019). Determinantal representations of the core inverse and its generalizations with applications. Journal of Mathematics, 2019, ID 1631979, 13 p.

    Google Scholar 

  41. Kyrchei, I. I. (2020). Weighted quaternion core-EP, DMP, MPD, and CMP inverses and their determinantal representations. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114, 198

    Google Scholar 

  42. Kyrchei, I. I., Mosić, D., & Stanimirović, P. S. (2021). Solvability of new constrained quaternion matrix approximation problems based on core-EP inverses. Advances in Applied Clifford Algebras, 31, 3

    MathSciNet  MATH  Google Scholar 

  43. Kyrchei, I. I., Mosić, D., & Stanimirović, P. S. (2021). MPD-DMP-solutions to quaternion two-sided restricted matrix equations. Computers & Mathematics with Applications, 40, 177

    Google Scholar 

  44. Kyrchei, I. I., Mosić, D., & Stanimirović, P. S. (2022). MPCEP-* CEPMP-solutions of some restricted quaternion matrix equations. Advances in Applied Clifford Algebras, 32, 16

    MathSciNet  MATH  Google Scholar 

  45. Levine, J., & Hartwig, E. R. (1980). Applications of Drazin inverse to the Hill cryptographic systems. Cryptologia, 5(2), 67–77

    MathSciNet  MATH  Google Scholar 

  46. Liu, L.-S., Wang, Q.-W., Chen. J.-F., & Xie, Y.-Z. (2022). An exact solution to a quaternion matrix equation with an application. Symmetry, 14(2), 375

    Google Scholar 

  47. Ling, S., Xu, X., & Jiang, T. (2013). Algebraic method for inequality constrained quaternion least squares problem. Advances in Applied Clifford Algebras, 23, 919–928

    MathSciNet  MATH  Google Scholar 

  48. Liu, X., & Cai, N. (2018). High-order iterative methods for the DMP inverse. Journal of Mathematics, 2018, ID 8175935, 6 p.

    Google Scholar 

  49. Liu, X., Yu, Y., & Wang, H. (2009). Determinantal representation of the weighted generalized inverse. Applied Mathematics and Computation, 208, 556–563

    MathSciNet  MATH  Google Scholar 

  50. Ma, H., Gao, X., & Stanimirović, P. S. (2020). Characterizations, iterative method, sign pattern and perturbation analysis for the DMP inverse with its applications. Applied Mathematics and Computation, 378, 125196

    MathSciNet  MATH  Google Scholar 

  51. Ma, H., & Stanimirović, P. S. (2019). Characterizations, approximation and perturbations of the core-EP inverse. Applied Mathematics and Computation, 359, 404–417

    MathSciNet  MATH  Google Scholar 

  52. Malik, B. S., & Thome, N. (2014). On a new generalized inverse for matrices of an arbitrary index. Applied Mathematics and Computation, 226, 575–580

    MathSciNet  MATH  Google Scholar 

  53. Meng, S. L. (2017). The DMP inverse for rectangular matrices. Filomat, 31(19), 6015–6019

    MathSciNet  MATH  Google Scholar 

  54. Mitra, K. S. (1972). Fixed rank solutions of linear matrix equations. Sankhya Ser. A., 35, 387–392

    MathSciNet  MATH  Google Scholar 

  55. Mosić, D. (2021). Core-EP inverses in Banach algebras. Linear and Multilinear Algebra, 69(16), 2976–2989

    MathSciNet  MATH  Google Scholar 

  56. Mosić, D. (2020). Core-EP inverse in rings with involution. Publicationes Mathematicae Debrecen, 96(3–4), 427–443

    Google Scholar 

  57. Mosić, D. (2020). Weighted gDMP inverse of operators between Hilbert spaces. Bulletin of the Korean Mathematical Society, 55, 1263–1271

    MathSciNet  MATH  Google Scholar 

  58. Mosić, D. (2020). Maximal classes of operators determining some weighted generalized inverses. Linear and Multilinear Algebra, 68(11), 2201–2220

    MathSciNet  MATH  Google Scholar 

  59. Mosić, D., & Djordjević, D. S. (2018). The gDMP inverse of Hilbert space operators. Journal of Spectral Theory, 8(2), 555–573

    MathSciNet  MATH  Google Scholar 

  60. Pablos Romo, F. (2021). On Drazin-Moore-Penrose inverses of finite potent endomorphisms. Linear and Multilinear Algebra, 69(4), 627–647

    MathSciNet  MATH  Google Scholar 

  61. Peng, Y. Z. (2010). New matrix iterative methods for constraint solutions of the matrix equation AXB = C. Journal of Computational and Applied Mathematics, 235, 726–735

    Google Scholar 

  62. Prasad, M. K., & Mohana, S. K. (2014). Core-EP inverse. Linear and Multilinear Algebra, 62(6), 792–802

    MathSciNet  MATH  Google Scholar 

  63. Prasad, M. K., & Raj, D. M. (2018). Bordering method to compute core-EP inverse. Special Matrices, 6, 193–200

    MathSciNet  MATH  Google Scholar 

  64. Prasad, M. K., Raj, D. M., & Vinay, M. (2018). Iterative method to find core-EP inverse. Bulletin of Kerala Mathematics Association, Special Issue, 16(1), 139–152

    MathSciNet  Google Scholar 

  65. Prasad, M. K., Rao, K. P. S. B., & Bapat, B. R. (1991). Generalized inverses over integral domains. II. Group inverses and Drazin inverses. Linear Algebra and Its Applications, 146, 31–47

    MathSciNet  MATH  Google Scholar 

  66. Rauhala, A. U. (1980). Introduction to array algebra. Photogrammetric Engineering & Remote Sensing, 46, 177–192

    Google Scholar 

  67. Regalia, A. P., & Mitra, K. S. (1989). Kronecker products, unitary matrices and signal processing applications. SIAM Review, 31, 586–613

    MathSciNet  MATH  Google Scholar 

  68. Rehman, A., Kyrchei, I., Ali, I., Akram, M., & Shakoor, A. (2020). Explicit formulas and determinantal representation for η-skew-hermitian solution to a system of quaternion matrix equations. Filomat, 34(8), 2601–2627

    MathSciNet  MATH  Google Scholar 

  69. Rehman, A., Kyrchei, I. I., Ali, I., Akram, M., & Shakoor, A. (2021). Constraint solution of a classical system of quaternion matrix equations and its Cramer’s rule. Iranian Journal of Science and Technology. Transaction A, Science, 45, 1015–1024

    MathSciNet  MATH  Google Scholar 

  70. Risteski, B. I. (2008). A new generalized matrix inverse method for balancing chemical equations and their stability. Boletín de la sociedad química de México, 2, 104–115

    Google Scholar 

  71. Sahoo, K. J., Behera, R., Stanimirović, P. S., Katsikis, N. V., & Ma, H. (2020). Core and core-EP inverses of tensors. Computers & Mathematics with Applications, 39, 9

    MathSciNet  MATH  Google Scholar 

  72. Sangwine, J. S., & Le Bihan, N. (2006). Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations. Applied Mathematics and Computation, 182(1), 727–738

    MathSciNet  MATH  Google Scholar 

  73. Sheng, X., & Chen, G. (2007). Full-rank representation of generalized inverse \( {A}_{T,S}^{(2)} \) and its applications. Computers & Mathematics with Applications, 54, 1422–1430 (2007)

    Google Scholar 

  74. Song, C., Feng, J., Wang, X., & Zhao, J. (2014). A real representation method for solving Yakubovich-j-Conjugate quaternion matrix equation. Abstract and Applied Analysis, 2014, ID 285086, 9 p.

    Google Scholar 

  75. Song, J. G. (2012). Determinantal representation of the generalized inverses over the quaternion skew field with applications. Applied Mathematics and Computation, 219, 656–667

    MathSciNet  MATH  Google Scholar 

  76. Song, J. G., Wang, Q. W., & Yu, W. S. (2018). Condensed Cramer rule for some restricted quaternion linear equations. Applied Mathematics and Computation, 336, 490–499

    MathSciNet  Google Scholar 

  77. Song, J. G., & Yu, W. S. (2019). Cramer’s rule for the general solution to a restricted system of quaternion matrix equations. Advances in Applied Clifford Algebras, 29, 91

    MathSciNet  MATH  Google Scholar 

  78. Song, J. G., Wang, W. Q., & Yu, W. S. (2018). Cramer’s rule for a system of quaternion matrix equations with applications. Applied Mathematics and Computation, 336, 490–499

    MathSciNet  MATH  Google Scholar 

  79. Song, J. G., Ding, W., & Ng, M. K. (2021). Low rank pure quaternion approximation for pure quaternion matrices. SIAM Journal on Matrix Analysis and Applications, 42(1), 58–82

    MathSciNet  MATH  Google Scholar 

  80. Stanimirović, P. S. (1999). General determinantal representation of generalized inverses over integral domains. Publicationes Mathematicae Debrecen, 54, 221–249

    MathSciNet  MATH  Google Scholar 

  81. Stanimirović, P. S., Bogdanović, S., & Ćirić, M. (2006). Adjoint mappings and inverses of matrices. Algebra Colloquium, 13(3), 421–432

    MathSciNet  MATH  Google Scholar 

  82. Stanimirović, P. S., & Djordjević, D. S. (2000). Full-rank and determinantal representation of the Drazin inverse. Linear Algebra and Its Applications, 311, 31–51

    MathSciNet  MATH  Google Scholar 

  83. Stanimirović, P. S., & Zlatanović, M. L. (2012). Determinantal representation of outer inverses in Riemannian space. Algebra Colloquium, 19, 877–892

    MathSciNet  MATH  Google Scholar 

  84. Stras̆ek, R. (2003). Uniform primeness of the Jordan algebra of hermitian quaternion matrices. Linear Algebra and Its Applications, 367, 235–242

    Google Scholar 

  85. Tian, Y. (2003). Ranks of solutions of the matrix equation AXB = C. Linear and Multilinear Algebra, 51, 111–125

    Google Scholar 

  86. Wang, B., Du, H., & Ma, H. (2020). Perturbation bounds for DMP and CMP inverses of tensors via Einstein product. Computers & Mathematics with Applications, 39, 28

    MathSciNet  MATH  Google Scholar 

  87. Wang, D., Li, Y., & Ding, W. (2022). Several kinds of special least squares solutions to quaternion matrix equation AXB=C. Journal of Applied Mathematics and Computation, 68, 1881–1899

    MathSciNet  MATH  Google Scholar 

  88. Wang, H. X., & Zhang, X. X. (2020). The core inverse and constrained matrix approximation problem. Open Mathematics, 18, 653–661

    MathSciNet  MATH  Google Scholar 

  89. Wang, Q., Yu, S., & Xie, W. (2010). Extreme ranks of real matrices in solution of the quaternion matrix equation AXB = C with applications. Algebra Colloquium, 17, 345–360

    MathSciNet  MATH  Google Scholar 

  90. Wang, Q.-W., & Zhang, F. (2008). The reflexive re-nonnegative definite solution to a quaternion matrix equation. Electronic Journal of Linear Algebra, 17, 88–101

    MathSciNet  MATH  Google Scholar 

  91. Wang, H. (2016). Core-EP decomposition and its applications. Linear Algebra and Its Applications, 508, 289–300

    MathSciNet  MATH  Google Scholar 

  92. Wang, X., Li, Y., & Dai, L. (2013). On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation AXB = C. Computers & Mathematics with Applications, 65, 657–664

    Google Scholar 

  93. Yu, A., & Deng, C. (2016). Characterization of DMP inverse in Hilbert space. Calcolo, 53, 331–341

    MathSciNet  MATH  Google Scholar 

  94. Yu, Y., & Wang, G. (2007). On the generalized inverse \( {A}_{T,S}^{(2)} \) over integral domains. Australian Journal of Mathematical Analysis and Applications, 4, 1–20

    Google Scholar 

  95. Yu, Y., & Wei, Y. (2009). Determinantal representation of the generalized inverse \( {A}_{T,S}^{(2)} \) over integral domains and its applications. Linear and Multilinear Algebra, 57, 547–559

    Google Scholar 

  96. Yuan, S. (2012). Least squares η-Hermitian solution for quaternion matrix equation AXB=C. In C. Liu, L. Wang, A. Yang (Eds), Information computing and applications, ICICA 2012. Communications in Computer and Information Science, vol. 307. Berlin, Heidelberg: Springer

    Google Scholar 

  97. Zhang, F. (2007). Geršgorin type theorems for quaternionic matrices. Linear Algebra and Its Applications, 424, 139–153

    MathSciNet  MATH  Google Scholar 

  98. Zhang, F. Z. (1997). Quaternions and matrices of quaternions. Linear Algebra and Its Applications, 251, 21–57

    MathSciNet  MATH  Google Scholar 

  99. Zhou, M. M., Chen, L. J., Li, T. T., & Wang, G. D. (2018). Three limit representations of the core-EP inverse. Filomat, 32, 5887–5894

    MathSciNet  MATH  Google Scholar 

  100. Zhang, Y., Li, Y., Zhao, H., Zhao, J., & Wang, G. (2022). Least-squares bihermitian and skew bihermitian solutions of the quaternion matrix equation AXB = C. Linear and Multilinear Algebra, 70(6), 1081–1095

    Google Scholar 

  101. Zhou, M., & Chen, J. (2018). Integral representations of two generalized core inverses. Applied Mathematics and Computation, 333, 187–193

    MathSciNet  MATH  Google Scholar 

  102. Zhu, H. (2019). On DMP inverses and m-EP elements in rings. Linear and Multilinear Algebra, 67(4), 756–766

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Ivan I. Kyrchei thanks the Erwin Schrödinger Institute for Mathematics and Physics (ESI) at the University of Vienna for the support given by the Special Research Fellowship Programme for Ukrainian Scientists. Dijana Mosić and Predrag Stanimirović are supported from the Ministry of Education, Science and Technological Development, Republic of Serbia, Grants 451-03-47/2023-01/200124. Predrag S. Stanimirović is supported by the Science Fund of the Republic of Serbia (No. 7750185, Quantitative Automata Models: Fundamental Problems and Applications – QUAM).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kyrchei, I.I., Mosić, D., Stanimirović, P.S. (2023). Quaternion Two-Sided Matrix Equations with Specific Constraints. In: Moslehian, M.S. (eds) Matrix and Operator Equations and Applications. Mathematics Online First Collections. Springer, Cham. https://doi.org/10.1007/16618_2023_45

Download citation

Publish with us

Policies and ethics