Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 279))

  • 607 Accesses

Abstract

CaV3.3 is the third member of the low-voltage-activated calcium channel family and the last to be recognized as disease gene. Previously, CACNA1I, the gene encoding CaV3.3, had been described as schizophrenia risk gene. More recently, de novo missense mutations in CACNA1I were identified in patients with variable degrees of neurodevelopmental disease with and without epilepsy. Their functional characterization indicated gain-of-function effects resulting in increased calcium load and hyperexcitability of neurons expressing CaV3.3. The amino acids mutated in the CaV3.3 disease variants are located in the vicinity of the channel’s activation gate and thus are classified as gate-modifying channelopathy mutations. A persistent calcium leak during rest and prolonged calcium spikes due to increased voltage sensitivity of activation and slowed kinetics of channel inactivation, respectively, may be causal for the neurodevelopmental defects. The prominent expression of CaV3.3 in thalamic reticular nucleus neurons and its essential role in generating the rhythmic thalamocortical network activity are consistent with a role of the mutated channels in the etiology of epileptic seizures and thus suggest T-type channel blockers as a viable treatment option.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaoui CE, Chemin J, Fechtali T, Lory P (2017) Modulation of T-type Ca 2 + channels by lavender and rosemary extracts. PLoS One 12:1–21

    Google Scholar 

  • Alza L, Casas-Benito A, Herreros J, Cantí C (2022) Targeting T-type channels in cancer: what is on and what is off? Drug Discov Today 27:743–758

    PubMed  Google Scholar 

  • Andrade A, Hope J, Allen A, Yorgan V, Lipscombe D, Pan JQ (2016) A rare schizophrenia risk variant of CACNA1I disrupts CaV3.3 channel activity. Sci Rep 6:1–13

    Google Scholar 

  • Arteaga-Tlecuitl R, Sanchez AL, Ramirez-Cordero BE, Rosendo-Pineda MJ, Vaca L, Gomora JC (2018) Increase of CaV3 channel activity induced by HVA β1b – subunit is not mediated by a physical interaction. BMC Res Notes 11:1–9

    Google Scholar 

  • Astori S, Lüthi A (2013) Synaptic plasticity at intrathalamic connections via CaV3.3 T-type Ca2+ channels and GluN2B-containing NMDA receptors. J Neurosci 33:624–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Lüthi A (2011) The CaV3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A 108:13823–13828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baez-Nieto D, Allen A, Akers-Campbell S, Yang L, Budnik N, Pupo A, Shin Y-C, Genovese G, Liao M, Pérez-Palma E, Heyne H, Lal D, Lipscombe D, Pan JQ (2022) Analysing an allelic series of rare missense variants of CACNA1I in a Swedish schizophrenia cohort. Brain 145:1839–1853

    PubMed  Google Scholar 

  • Bladen C, McDaniel SW, Gadotti VM, Petrov RR, Berger ND, Diaz P, Zamponi GW (2015) Characterization of novel cannabinoid based T-type calcium channel blockers with analgesic effects. ACS Chem Nerosci 6:277–287

    CAS  Google Scholar 

  • Blesneac I, Chemin J, Bidaud I, Huc-Brandt S, Vandermoere F, Lory P (2015) Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties. Proc Natl Acad Sci U S A 112:13705–13710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourinet E, Francois A, Laffray S (2016) T-type calcium channels in neuropathic pain. Pain 157:S15–S22

    PubMed  Google Scholar 

  • Broicher T, Kanyshkova T, Meuth P, Pape HC, Budde T (2008) Correlation of T-channel coding gene expression, IT, and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy. Mol Cell Neurosci 39:384–399

    CAS  PubMed  Google Scholar 

  • Cain SM, Snutch TP (2010) Contributions of T-type calcium channel isoforms to neuronal firing. Channels 4:475–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone E, Calorio C, Vandael DHF (2014) T-type channel-mediated neurotransmitter release. Pflugers Arch Eur J Physiol 466:677–687

    CAS  Google Scholar 

  • Cazade M, Nuss CE, Bidaud I, Renger JJ, Uebele VN, Lory P, Chemin J (2014) Cross-modulation and molecular interaction at the cav3.3 protein between the endogenous lipids and the T-type calcium channel antagonist TTA-A2. Mol Pharmacol 85:218–225

    PubMed  Google Scholar 

  • Chemin J, Monteil A, Dubel S, Nargeot J, Lory P (2001a) The α1I T-type calcium channel exhibits faster gating properties when overexpressed in neuroblastoma/glioma NG 108-15 cells. Eur J Neurosci 14:1678–1686

    CAS  PubMed  Google Scholar 

  • Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P (2001b) Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J 20:7033–7040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chemin J, Taiakina V, Monteil A, Piazza M, Guan W, Stephens RF, Kitmitto A, Pang ZP, Dolphin AC, Perez-Reyes E, Dieckmann T, Guillemette JG, Spafford JD (2017) Calmodulin regulates Cav3 T-type channels at their gating brake. J Biol Chem 292:20010–20031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier M, Lory P, Mironneau C, Macrez N (2006) T-type Cav3.3 calcium channels produce spontaneous low-threshold action potentials and intracellular calcium oscillations. Eur J Neurosci 23:2321–2329

    PubMed  Google Scholar 

  • Cmarko L, Weiss N (2020) Selective inhibition of neuronal Cav3.3 T-type calcium channels by TAT-based channel peptide. Mol Brain 13:4–6

    Google Scholar 

  • Crunelli V, Tóth TI, Cope DW, Blethyn K, Hughes SW (2005) The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 562:121–129

    CAS  PubMed  Google Scholar 

  • Cueni L, Canepari M, Luján R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Lüthi A (2008) T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 11:683–692

    CAS  PubMed  Google Scholar 

  • Donnelly P, Barroso I, Blackwell J, ISGC and the WTCCC 2 et al (2012) Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 72:620–628

    Google Scholar 

  • Dreyfus FM, Tscherter A, Errington AC, Renger JJ, Shin HS, Uebele VN, Crunelli V, Lambert RC, Leresche N (2010) Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of ITwindow. J Neurosci 30:99–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubel SJ, Altier C, Chaumont S, Lory P, Bourinet E, Nargeot J (2004) Plasma membrane expression of T-type calcium channel α1 subunits is modulated by high voltage-activated auxiliary subunits. J Biol Chem 279:29263–29269

    CAS  PubMed  Google Scholar 

  • Eckle V-S, Shcheglovitov A, Vitko I, Dey D, Yap CC, Winckler B, Perez-Reyes E (2014) Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility. J Physiol 592:795–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • El Ghaleb Y, Schneeberger PE, Fernández-Quintero ML, Geisler SM, Pelizzari S, Polstra AM, Van HJM, Denecke J, Campiglio M, Liedl KR, Stevens CA, Person RE, Rentas S, Marsh ED, Conlin LK, Tuluc P, Kutsche K, Flucher BE (2021) CACNA1I gain-of-function mutations differentially affect channel gating and cause neurodevelopmental disorders. Brain 144:2092–2106

    PubMed  PubMed Central  Google Scholar 

  • Feseha S, Stamenic TT, Wallace D, Tamag C, Yang L, Pan JQ, Todorovic SM (2020) Global genetic deletion of CaV3.3 channels facilitates anaesthetic induction and enhances isoflurane-sparing effects of T-type calcium channel blockers. Sci Rep 10:21510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fogel SM, Smith CT (2011) The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci Biobehav Rev 35:1154–1165

    PubMed  Google Scholar 

  • Ghoshal A et al (2020) Effects of a patient-derived de novo coding alteration of CACNA1I in mice connect a schizophrenia risk gene with sleep spindle deficits. Transl Psychiatry 10:1–12

    Google Scholar 

  • Gomora JC, Murbartián J, Arias JM, Lee J-H, Perez-Reyes E (2002) Cloning and expression of the human T-type channel Cav3.3: insights into prepulse facilitation. Biophys J 83:229–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid J, Peloquin JB, Monteil A, Zamponi GW (2006) Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: a role of domain IV? Neuroscience 143:717–728

    CAS  PubMed  Google Scholar 

  • Hansen PBL (2015) Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system: news from the world of knockout mice. Am J Physiol Regul Integr Comp Physiol 308:R227–R237

    CAS  PubMed  Google Scholar 

  • Harding EK, Zamponi GW (2022) Central and peripheral contributions of T-type calcium channels in pain. Mol Brain 15:1–13

    Google Scholar 

  • He L, Yu Z, Geng Z, Huang Z, Zhang C, Dong Y, Gao Y, Wang Y, Chen Q, Sun L, Ma X, Huang B, Wang X, Zhao Y (2022) Structure, gating, and pharmacology of human CaV3.3 channel. Nat Commun 13:1–9

    Google Scholar 

  • Hering S, Berjukow S, Aczél S, Timin EN (1998) Ca2+ channel block and inactivation: common molecular determinants. Trends Pharmacol Sci 19:439–443

    CAS  PubMed  Google Scholar 

  • Hofer NT, Tuluc P, Ortner NJ, Nikonishyna YV, Fernándes-quintero ML, Liedl KR, Flucher BE, Cox H, Striessnig J (2020) Biophysical classification of a CACNA1D de novo mutation as a high-risk mutation for a severe neurodevelopmental disorder. Mol Autism 11:1–18

    Google Scholar 

  • Huguenard JR, McCormick DA (2007) Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci 30:350–356

    CAS  PubMed  Google Scholar 

  • Jurkovicova-Tarabova B, Cmarko L, Rehak R, Zamponi GW, Lacinova L, Weiss N (2019) Identification of a molecular gating determinant within the carboxy terminal region of Ca v 3.3 T-type channels. Mol Brain 12:1–11

    Google Scholar 

  • Kang HW, Park JY, Lee JH (2008) Distinct contributions of different structural regions to the current kinetics of the Cav3.3 T-type Ca2+ channel. Biochim Biophys Acta Biomembr 1778:2740–2748

    CAS  Google Scholar 

  • Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α1G T-type Ca2+ channels. Neuron 31:35–45

    CAS  PubMed  Google Scholar 

  • Klöckner U, Lee JH, Cribbs LL, Daud A, Hescheler J, Pereverzev A, Perez-Reyes E, Schneider T (1999) Comparison of the Ca2+ currents induced by expression of three cloned α1 subunits, α1G, α1H and α1I, of low-voltage-activated T-type Ca2+ channels. Eur J Neurosci 11:4171–4178

    PubMed  Google Scholar 

  • Latour I, Hamid J, Beedle AM, Zamponi GW, Macvicar BA (2003) Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia 41:347–353

    PubMed  Google Scholar 

  • Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klöckner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T- type calcium channel family. J Neurosci 19:1912–1921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SE, Lee J, Latchoumane C, Lee B, Oh SJ, Saud ZA, Park C, Sun N, Cheong E, Chen CC, Choi EJ, Lee CJ, Shin HS (2014) Rebound burst firing in the reticular thalamus is not essential for pharmacological absence seizures in mice. Proc Natl Acad Sci U S A 111:11828–11833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee N, Jeong S, Kim K-C, Kim J-A, Park J-Y, Kang H-W, Perez-Reyes E, Lee J-H (2017) Ca2+ regulation of Cav3.3 T-type Ca2+ channel is mediated by calmodulin. Mol Pharmacol 92:347–357

    CAS  PubMed  Google Scholar 

  • Leresche N, Lambert RC (2017) T-type calcium channels in synaptic plasticity. Channels 11:121–139

    PubMed  Google Scholar 

  • Li J, Stevens L, Klugbauer N, Wray D (2004) Roles of molecular regions in determining differences between voltage dependence of activation of CaV3.1 and CaV1.2 calcium channels. J Biol Chem 279:26858–26867

    CAS  PubMed  Google Scholar 

  • Liu X-B, Murray KD, Jones EG (2011) Low-threshold calcium channel subunit Ca(v) 3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex. J Comp Neurol 519:1181–1195

    CAS  PubMed  Google Scholar 

  • Lory P, Nicole S, Monteil A (2020) Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 472:831–844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maksemous N, Blayney CD, Sutherland HG, Smith RA, Lea RA, Tran KN, Ibrahim O, Mcarthur JR, Haupt LM, Cader MZ, Finol-urdaneta RK, Adams DJ, Griffiths LR, Lory P, Adams DJ (2022) Investigation of CACNA1I Cav3. 3 dysfunction in hemiplegic migraine. Front Mol Neurosci 15:892820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manoach DS, Pan JQ, Purcell SM, Stickgold R (2016) Reduced sleep spindles in schizophrenia: a treatable endophenotype that links risk genes to impaired cognition? Biol Psychiatry 80:599–608

    PubMed  Google Scholar 

  • Marksteiner R, Schurr P, Berjukow S, Margreiter E, Perez-Reyes E, Hering S (2001) Inactivation determinants in segment IIIS6 of CaV3.1. J Physiol 537:27–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mckay BE, Mcrory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW (2006) CaV3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 24:2581–2594

    PubMed  Google Scholar 

  • Mittman S, Guo J, Emerick MC, Agnew WS (1999) Structure and alternative splicing of the gene encoding a. Mol Divers 269:121–124

    CAS  Google Scholar 

  • Monteil A, Chemin J, Leuranguer V, Altier C, Mennessier G, Bourinet E, Lory P, Nargeot J (2000) Specific properties of T-type calcium channels generated by the human alpha 1I subunit. J Biol Chem 275:16530–16535

    CAS  PubMed  Google Scholar 

  • Murbartián J, Arias JM, Perez-Reyes E (2004) Functional impact of alternative splicing of human T-type Cav3.3 calcium channels. J Neurophysiol 92:3399–3407

    PubMed  Google Scholar 

  • Nam G (2018) T-type calcium channel blockers: a patent review (2012–2018). Expert Opin Ther Pat 28:883–901

    CAS  PubMed  Google Scholar 

  • Park JY, Kang HW, Jeong SW, Lee JH (2004) Multiple structural elements contribute to the slow kinetics of the Ca v3.3 T-type channel. J Biol Chem 279:21707–21713

    CAS  PubMed  Google Scholar 

  • Pellegrini C, Lecci S, Lüthi A, Astori S (2016) Suppression of sleep spindle rhythmogenesis in mice with deletion of CaV3.2 and CaV3.3 T-type Ca2+ channels. Sleep 39:875–885

    PubMed  PubMed Central  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    CAS  PubMed  Google Scholar 

  • Perez-Reyes E (2006) Molecular characterization of T-type calcium channels. Cell Calcium 40:89–96

    CAS  PubMed  Google Scholar 

  • Perez-Reyes E (2010) Characterization of the gating brake in the I-II loop of CaV3 T-type calcium channels. Channels 4:453–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinggera A, Striessnig J (2016) Cav1.3 (CACNA1D) L-type Ca2+ channel dysfunction in CNS disorders. J Physiol 594:5839–5849

    PubMed  PubMed Central  Google Scholar 

  • Pinggera A, Mackenroth L, Rump A, Schallner J, Beleggia F, Wollnik B, Striessnig J (2017) New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy. Hum Mol Genet 26:2923–2932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosanova M, Ulrich D (2005) Behavioral/systems/cognitive pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci 25:9398–9405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Roige S, Fontanillas P, Elson SL, Gray JC, de Wit H, MacKillop J, Palmer AA (2019) Genome-wide association studies of impulsive personality traits (BIS-11 and UPPS-P) and drug experimentation in up to 22,861 adult research participants identify loci in the CACNA1I and CADM2 genes. J Neurosci 39:2562–2572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Sandoval AL, Carrillo ZH, Velásquez CED, Delgadillo DM, Rivera HM, Gomora JC (2018) Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels. PLoS One 13:1–29

    Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    PubMed Central  Google Scholar 

  • Snutch TP, Zamponi GW (2018) Recent advances in the development of T-type calcium channel blockers for pain intervention. Br J Pharmacol 175:2375–2383

    CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT (2005) Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 102:8089–8096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Striessnig J (2021) Voltage-gated Ca2+-channel α1-subunit de novo missense mutations: gain or loss of function – implications for potential therapies. Front Synaptic Neurosci 13:1–25

    Google Scholar 

  • Talavera K, Nilius B (2006) Biophysics and structure – function relationship of T-type Ca 2 + channels. Cell Calcium 40:97–114

    CAS  PubMed  Google Scholar 

  • Talley EM, Cribbs LL, Lee J-H, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uebele VN et al (2009) Positive allosteric interaction of structurally diverse T-type calcium channel antagonists. Cell Biochem Biophys 55:81–93

    CAS  PubMed  Google Scholar 

  • Vitko I, Chen Y, Arias JM, Shen Y, Wu X, Perez-reyes E (2005) Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci 25:4844–4855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss N, Zamponi GW (2019) T-type channel druggability at a crossroads. ACS Chem Nerosci 10:1124–1126

    CAS  Google Scholar 

  • Weiss N, Zamponi GW (2020) Genetic T-type calcium channelopathies. J Med Genet 57:1–10

    CAS  PubMed  Google Scholar 

  • Wen X, Liang H, Li H, Ou W, Wang HB, Liu H, Li S (2018) In vitro neurotoxicity by ropivacaine is reduced by silencing Cav3.3 T-type calcium subunits in neonatal rat sensory neurons. Artif Cells Nanomed Biotechnol 46:1617–1624

    CAS  PubMed  Google Scholar 

  • Xie Y, Huang D, Wei L, Luo X-J (2018) Further evidence for the genetic association between CACNA1I and schizophrenia. Hereditas 155:16

    PubMed  PubMed Central  Google Scholar 

  • Xu W, Liu Y, Chen J, Guo Q, Liu K, Wen Z, Zhou Z, Song Z, Zhou J, He L, Yi Q, Shi Y (2018) Genetic risk between the CACNA1I gene and schizophrenia in Chinese Uygur population. Hereditas 155:5

    PubMed  Google Scholar 

  • Yu J, Shi Y, Zhao K, Yang G, Yu L, Li Y, Andersson EM, Ämmälä C, Yang SN, Berggren PO (2020) Enhanced expression of β cell CaV3.1 channels impairs insulin release and glucose homeostasis. Proc Natl Acad Sci U S A 117:448–453

    CAS  PubMed  Google Scholar 

  • Yunker AMR, Sharp AH, Sundarraj S, Ranganathan V, Copeland TD, McEnery MW (2003) Immunological characterization of T-type voltage-dependent calcium channel Cav3.1 (alpha1G) and Cav3.3 (alpha1I) isoforms reveal differences in their localization, expression, and neural development. Neuroscience 117:321–335

    CAS  PubMed  Google Scholar 

  • Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67:821–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Mori M, Burgess DL, Noebels JL (2002) Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J Neurosci 22:6362–6371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, Pan X, Yan N (2019) Cryo-EM structures of apo and antagonist-bound human CaV3.1. Nature 576:492–497

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard E. Flucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Ghaleb, Y., Flucher, B.E. (2023). CaV3.3 Channelopathies. In: Striessnig, J. (eds) Voltage-gated Ca2+ Channels: Pharmacology, Modulation and their Role in Human Disease. Handbook of Experimental Pharmacology, vol 279. Springer, Cham. https://doi.org/10.1007/164_2022_631

Download citation

Publish with us

Policies and ethics