Skip to main content

Challenges Related to the Use of Next-Generation Sequencing for the Optimization of Drug Therapy

  • Chapter
  • First Online:
Precision Medicine

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 280))

  • 375 Accesses

Abstract

Over the last decade, next-generation sequencing (NGS) methods have become increasingly used in various areas of human genomics. In routine clinical care, their use is already implemented in oncology to profile the mutational landscape of a tumor, as well as in rare disease diagnostics. However, its utilization in pharmacogenomics is largely lacking behind. Recent population-scale genome data has revealed that human pharmacogenes carry a plethora of rare genetic variations that are not interrogated by conventional array-based profiling methods and it is estimated that these variants could explain around 30% of the genetically encoded functional pharmacogenetic variability.

To interpret the impact of such variants on drug response a multitude of computational tools have been developed, but, while there have been major advancements, it remains to be shown whether their accuracy is sufficient to improve personalized pharmacogenetic recommendations in robust trials. In addition, conventional short-read sequencing methods face difficulties in the interrogation of complex pharmacogenes and high NGS test costs require stringent evaluations of cost-effectiveness to decide about reimbursement by national healthcare programs. Here, we illustrate current challenges and discuss future directions toward the clinical implementation of NGS to inform genotype-guided decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almarri MA, Bergström A, Prado-Martinez J et al (2020) Population structure, stratification, and introgression of human structural variation. Cell 182:189–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amorosi CJ, Chiasson MA, McDonald MG et al (2021) Massively parallel characterization of CYP2C9 variant enzyme activity and abundance. Am J Hum Genet 108:1735–1751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anna A, Monika G (2018) Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet 59:253–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Backenroth D, He Z, Kiryluk K et al (2018) FUN-LDA: a latent Dirichlet allocation model for predicting tissue-specific functional effects of noncoding variation: methods and applications. Am J Hum Genet 102:920–942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Backman JD, Li AH, Marcketta A et al (2021) Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599:628–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berg JS, Khoury MJ, Evans JP (2011) Deploying whole genome sequencing in clinical practice and public health: meeting the challenge one bin at a time. Genet Med 13:499–504

    PubMed  Google Scholar 

  • Bergström A, McCarthy SA, Hui R et al (2020) Insights into human genetic variation and population history from 929 diverse genomes. Science 367:eaay5012

    PubMed  PubMed Central  Google Scholar 

  • Bis JC, Jian X, Kunkle BW et al (2020) Whole exome sequencing study identifies novel rare and common Alzheimer’s-associated variants involved in immune response and transcriptional regulation. Mol Psychiatry 25:1859–1875

    CAS  PubMed  Google Scholar 

  • Bleecker ER, Postma DS, Lawrance RM et al (2008) Effect of ADRB2 polymorphisms on response to longacting β2-agonist therapy: a pharmacogenetic analysis of two randomised studies. Lancet 370:2118–2125

    Google Scholar 

  • Buermans HPJ, Vossen RHAM, Anvar SY et al (2017) Flexible and scalable full-length CYP2D6 long amplicon PacBio sequencing. Hum Mutat 38:310–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C-J, Chen P-L, Yang W-S, Chao K-M (2014) A fault-tolerant method for HLA typing with PacBio data. BMC Bioinformatics 15:296

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Shen F, Gonzaludo N et al (2021) Cyrius: accurate CYP2D6 genotyping using whole-genome sequencing data. Pharmacogenomics J 21:251–261

    PubMed  PubMed Central  Google Scholar 

  • Cheng J, Nguyen TYD, Cygan KJ et al (2019) MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol 20:48

    PubMed  PubMed Central  Google Scholar 

  • Chheda H, Palta P, Pirinen M et al (2017) Whole-genome view of the consequences of a population bottleneck using 2926 genome sequences from Finland and United Kingdom. Eur J Hum Genet 25:477–484

    PubMed  PubMed Central  Google Scholar 

  • Choi Y, Sims GE, Murphy S et al (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7:e46688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christenhusz GM, Devriendt K, Dierickx K (2013) To tell or not to tell? A systematic review of ethical reflections on incidental findings arising in genetics contexts. Eur J Hum Genet 21:248–255

    PubMed  Google Scholar 

  • Danis D, Jacobsen JOB, Carmody LC et al (2021) Interpretable prioritization of splice variants in diagnostic next-generation sequencing. Am J Hum Genet 108:1564–1577. https://doi.org/10.1016/j.ajhg.2021.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Coster W, Weissensteiner MH, Sedlazeck FJ (2021) Towards population-scale long-read sequencing. Nat Rev Genet 22:572–587

    PubMed  PubMed Central  Google Scholar 

  • Deplancke B, Alpern D, Gardeux V (2016) The genetics of transcription factor DNA binding variation. Cell 166:538–554

    CAS  PubMed  Google Scholar 

  • Devarajan S, Moon I, Ho MF et al (2019) Pharmacogenomic next-generation DNA sequencing: lessons from the identification and functional characterization of variants of unknown significance in CYP2C9 and CYP2C19. Drug Metab Dispos 47:425–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Boyle AP (2021) Prioritization of regulatory variants with tissue-specific function in the non-coding regions of human genome. Nucleic Acids Res:gkab924

    Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    CAS  PubMed  Google Scholar 

  • Elfatih A, Mohammed I, Abdelrahman D, Mifsud B (2021) Frequency and management of medically actionable incidental findings from genome and exome sequencing data: a systematic review. Physiol Genomics 53:373–384

    CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Google Scholar 

  • Feng Y, Zhang Y, Ying C et al (2015) Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinformatics 13:4–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster MW, Mulvihill JJ, Sharp RR (2009) Evaluating the utility of personal genomic information. Genet Med 11:570–574

    PubMed  Google Scholar 

  • Fowler DM, Stephany JJ, Fields S (2014) Measuring the activity of protein variants on a large scale using deep mutational scanning. Nat Protoc 9:2267–2284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francioli LC, Menelaou A, Pulit SL et al (2014) Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat Genet 46:818–825

    CAS  Google Scholar 

  • Fujikura K, Ingelman-Sundberg M, Lauschke VM (2015) Genetic variation in the human cytochrome P450 supergene family. Pharmacogenet Genomics 25:584–594

    CAS  PubMed  Google Scholar 

  • Fukunaga K, Hishinuma E, Hiratsuka M et al (2021) Determination of novel CYP2D6 haplotype using the targeted sequencing followed by the long-read sequencing and the functional characterization in the Japanese population. J Hum Genet 66:139–149

    CAS  PubMed  Google Scholar 

  • Gaedigk A, Boone EC, Scherer SE et al (2022) CYP2C8, CYP2C9, and CYP2C19 characterization using next-generation sequencing and haplotype analysis: a GeT-RM collaborative project. J Mol Diagn 24:337–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Zhang C, Yuan L et al (2020) PGG.Han: the Han Chinese genome database and analysis platform. Nucleic Acids Res 48:D971–D976

    CAS  PubMed  Google Scholar 

  • Gaziano JM, Concato J, Brophy M et al (2016) Million veteran program: a mega-biobank to study genetic influences on health and disease. J Clin Epidemiol 70:214–223

    PubMed  Google Scholar 

  • Genome Asia 100K Consortium (2019) The GenomeAsia 100K project enables genetic discoveries across Asia. Nature 576:106–111

    Google Scholar 

  • Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526:68–74

    Google Scholar 

  • Gordon AS, Tabor HK, Johnson AD et al (2014) Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a large-scale exome dataset. Hum Mol Genet 23:1957–1963

    CAS  PubMed  Google Scholar 

  • Gordon LG, White NM, Elliott TM et al (2020) Estimating the costs of genomic sequencing in cancer control. BMC Health Serv Res 20:492

    PubMed  PubMed Central  Google Scholar 

  • Green RC, Berg JS, Grody WW et al (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 15(7):565–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm DG, Azencott C-A, Aicheler F et al (2015) The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. Hum Mutat 36:513–523

    PubMed  PubMed Central  Google Scholar 

  • Gudbjartsson DF, Helgason H, Gudjonsson SA et al (2015) Large-scale whole-genome sequencing of the Icelandic population. Nat Genet 47:435–444

    CAS  PubMed  Google Scholar 

  • Guo Y, Ye F, Sheng Q et al (2014) Three-stage quality control strategies for DNA re-sequencing data. Brief Bioinform 15:879–889

    CAS  PubMed  Google Scholar 

  • Hauser AS, Chavali S, Masuho I et al (2018) Pharmacogenomics of GPCR drug targets. Cell 172:41–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Liu L, Wang K, Ionita-Laza I (2018) A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs. Nat Commun 9:5199

    PubMed  PubMed Central  Google Scholar 

  • Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8

    CAS  PubMed  Google Scholar 

  • Hosono H, Kumondai M, Maekawa M et al (2016) Functional characterization of 34 CYP2A6 allelic variants by assessment of nicotine C-oxidation and coumarin 7-hydroxylation activities. Drug Metab Dispos 45:279–285

    PubMed  Google Scholar 

  • Hyman ED (1988) A new method of sequencing DNA. Anal Biochem 174:423–436

    CAS  PubMed  Google Scholar 

  • Ingelman-Sundberg M, Mkrtchian S, Zhou Y, Lauschke VM (2018) Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum Genomics 12:26

    PubMed  PubMed Central  Google Scholar 

  • Ioannidis NM, Rothstein JH, Pejaver V et al (2016) REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99:877–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ionita-Laza I, McCallum K, Xu B, Buxbaum J (2016) A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat Genet 48:214–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaganathan K, Kyriazopoulou-Panagiotopoulou S, McRae JF et al (2019) Predicting splicing from primary sequence with deep learning. Cell 176:535–548

    CAS  PubMed  Google Scholar 

  • Katragadda S, Hall TO, Bettadapura R et al (2021) Determining cost-optimal next-generation sequencing panels for rare disease and pharmacogenomics testing. Clin Chem 67:1122–1132

    PubMed  Google Scholar 

  • Kimura S, Umeno M, Skoda RC et al (1989) The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet 45:889–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kircher M, Witten DM, Jain P et al (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein ME, Parvez MM, Shin J-G (2017) Clinical implementation of pharmacogenomics for personalized precision medicine: barriers and solutions. J Pharm Sci 106:2368–2379

    CAS  PubMed  Google Scholar 

  • Koromina M, Pandi MT, van der Spek PJ et al (2021) The ethnogeographic variability of genetic factors underlying G6PD deficiency. Pharmacol Res:105904

    Google Scholar 

  • Kozyra M, Ingelman-Sundberg M, Lauschke VM (2017) Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet Med 19:20–29

    CAS  PubMed  Google Scholar 

  • Lacaze P, Ronaldson KJ, Zhang EJ et al (2020) Genetic associations with clozapine-induced myocarditis in patients with schizophrenia. Transl Psychiatry 10:37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25–R25

    PubMed  PubMed Central  Google Scholar 

  • Lauschke VM, Ingelman-Sundberg M (2016) Requirements for comprehensive pharmacogenetic genotyping platforms. Pharmacogenomics 17:917–924

    CAS  PubMed  Google Scholar 

  • Lauschke VM, Ingelman-Sundberg M (2019) Prediction of drug response and adverse drug reactions: from twin studies to next generation sequencing. Eur J Pharm Sci 130:65–77

    CAS  PubMed  Google Scholar 

  • Lauschke VM, Ingelman-Sundberg M (2020) Emerging strategies to bridge the gap between pharmacogenomic research and its clinical implementation. NPJ Genom Med 5:9

    PubMed  PubMed Central  Google Scholar 

  • Lauschke VM, Milani L, Ingelman-Sundberg M (2017) Pharmacogenomic biomarkers for improved drug therapy – recent progress and future developments. AAPS J 20:4

    PubMed  Google Scholar 

  • Lee W, Zhang Y, Mukhyala K et al (2009) Bi-directional SIFT predicts a subset of activating mutations. PLoS One 4:e8311

    PubMed  PubMed Central  Google Scholar 

  • Lee D, Gorkin DU, Baker M et al (2015) A method to predict the impact of regulatory variants from DNA sequence. Nat Genet 47:955–961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Roos P, Sharma N et al (2017) Systematic computational identification of variants that activate exonic and intronic cryptic splice sites. Am J Hum Genet 100:751–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Wheeler MM, Patterson K et al (2019) Stargazer: a software tool for calling star alleles from next-generation sequencing data using CYP2D6 as a model. Genet Med 21:361–372

    CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li MJ, Li M, Liu Z et al (2017) Cepip: context-dependent epigenomic weighting for prioritization of regulatory variants and disease-associated genes. Genome Biol 18:52

    PubMed  PubMed Central  Google Scholar 

  • Liau Y, Maggo S, Miller AL et al (2019) Nanopore sequencing of the pharmacogene CYP2D6 allows simultaneous haplotyping and detection of duplications. Pharmacogenomics 20:1033–1047

    CAS  PubMed  Google Scholar 

  • Liu L, Sanderford MD, Patel R et al (2019) Biological relevance of computationally predicted pathogenicity of noncoding variants. Nat Commun 10:330

    PubMed  PubMed Central  Google Scholar 

  • Liu C, Yang X, Duffy BF et al (2021) High-resolution HLA typing by long reads from the R10.3 Oxford nanopore flow cells. Hum Immunol 82:288–295

    CAS  PubMed  Google Scholar 

  • Logsdon GA, Vollger MR, Eichler EE (2020) Long-read human genome sequencing and its applications. Nat Rev Genet 21:597–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lohn Z, Adam S, Birch PH, Friedman JM (2014) Incidental findings from clinical genome-wide sequencing: a review. J Genet Couns 23:463–473

    CAS  PubMed  Google Scholar 

  • Matern BM, Olieslagers TI, Groeneweg M et al (2020) Long-read nanopore sequencing validated for human leukocyte antigen class I typing in routine diagnostics. J Mol Diagn 22:912–919

    CAS  PubMed  Google Scholar 

  • Matreyek KA, Starita LM, Stephany JJ et al (2018) Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat Genet 50:874–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthaei J, Brockmöller J, Tzvetkov MV et al (2015) Heritability of metoprolol and torsemide pharmacokinetics. Clin Pharmacol Ther 98:611–621

    CAS  PubMed  Google Scholar 

  • McGuire AL, Gabriel S, Tishkoff SA et al (2020) The road ahead in genetics and genomics. Nat Rev Genet 21:581–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • McInnes G, Sharo AG, Koleske ML et al (2021) Opportunities and challenges for the computational interpretation of rare variation in clinically important genes. Am J Hum Genet 108:535–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mort M, Sterne-Weiler T, Li B et al (2014) MutPred splice: machine learning-based prediction of exonic variants that disrupt splicing. Genome Biol 15:R19

    PubMed  PubMed Central  Google Scholar 

  • Muroi Y, Saito T, Takahashi M et al (2014) Functional characterization of wild-type and 49 CYP2D6 allelic variants for N-desmethyltamoxifen 4-hydroxylation activity. Drug Metab Pharmacokinet 29:360–366

    PubMed  Google Scholar 

  • Nagasaki M, Yasuda J, Katsuoka F et al (2015) Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nat Commun 6:8018

    CAS  PubMed  Google Scholar 

  • Nelson MR, Wegmann D, Ehm MG et al (2012) An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337:100–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nofziger C, Turner AJ, Sangkuhl K et al (2020) PharmVar GeneFocus: CYP2D6. Clin Pharmacol Ther 107:154–170

    CAS  PubMed  Google Scholar 

  • Numanagić I, Malikić S, Ford M et al (2018) Allelic decomposition and exact genotyping of highly polymorphic and structurally variant genes. Nat Commun 9:828

    PubMed  PubMed Central  Google Scholar 

  • Offer SM, Fossum CC, Wegner NJ et al (2014) Comparative functional analysis of DPYD variants of potential clinical relevance to dihydropyrimidine dehydrogenase activity. Cancer Res 74:2545–2554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega VE, Hawkins GA, Moore WC et al (2014) Effect of rare variants in ADRB2 on risk of severe exacerbations and symptom control during longacting β agonist treatment in a multiethnic asthma population: a genetic study. Lancet Respir Med 2:204–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plumpton CO, Pirmohamed M, Hughes DA (2019) Cost-effectiveness of panel tests for multiple pharmacogenes associated with adverse drug reactions: an evaluation framework. Clin Pharmacol Ther 105:1429–1438

    PubMed  Google Scholar 

  • Qi H, Zhang H, Zhao Y et al (2021) MVP predicts the pathogenicity of missense variants by deep learning. Nat Commun 12:510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao W, Yang Y, Sebra R et al (2016) Long-read single molecule real-time full gene sequencing of cytochrome P450-2D6. Hum Mutat 37:315–323

    CAS  PubMed  Google Scholar 

  • Reisberg S, Krebs K, Lepamets M et al (2019) Translating genotype data of 44,000 biobank participants into clinical pharmacogenetic recommendations: challenges and solutions. Genet Med 21:1345–1354

    PubMed  Google Scholar 

  • Rentzsch P, Schubach M, Shendure J, Kircher M (2021) CADD-splice – improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med 13:31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roadmap Epigenomics Consortium (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330

    PubMed Central  Google Scholar 

  • Rojano E, Seoane P, Ranea JAG, Perkins JR (2019) Regulatory variants: from detection to predicting impact. Brief Bioinform 20:1639–1654

    CAS  PubMed  Google Scholar 

  • Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    CAS  PubMed  Google Scholar 

  • Russell LE, Schwarz UI (2020) Variant discovery using next-generation sequencing and its future role in pharmacogenetics. Pharmacogenomics 21:471–486

    CAS  PubMed  Google Scholar 

  • Russell LE, Zhou Y, Almousa AA et al (2021) Pharmacogenomics in the era of next generation sequencing – from byte to bedside. Drug Metab Rev 53:253–278

    PubMed  Google Scholar 

  • Saelaert M, Mertes H, Moerenhout T et al (2019) Criteria for reporting incidental findings in clinical exome sequencing – a focus group study on professional practices and perspectives in Belgian genetic centres. BMC Med Genomics 12:123

    PubMed  PubMed Central  Google Scholar 

  • Sakuyama K, Sasaki T, Ujiie S et al (2008) Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57). Drug Metab Dispos 36:2460–2467

    CAS  PubMed  Google Scholar 

  • Schaller L, Lauschke VM (2019) The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum Genet 138:1359–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schärfe CPI, Tremmel R, Schwab M et al (2017) Genetic variation in human drug-related genes. Genome Med 9:117–115

    PubMed  PubMed Central  Google Scholar 

  • Schluckebier L, Caetano R, Garay OU et al (2020) Cost-effectiveness analysis comparing companion diagnostic tests for EGFR, ALK, and ROS1 versus next-generation sequencing (NGS) in advanced adenocarcinoma lung cancer patients. BMC Cancer 20:875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarze K, Buchanan J, Taylor JC, Wordsworth S (2018) Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med 20:1122–1130

    PubMed  Google Scholar 

  • Schwarze K, Buchanan J, Fermont JM et al (2020) The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet Med 22:85–94

    CAS  PubMed  Google Scholar 

  • Seitz T, Stalmann R, Dalila N et al (2015) Global genetic analyses reveal strong inter-ethnic variability in the loss of activity of the organic cation transporter OCT1. Genome Med 7:56

    PubMed  PubMed Central  Google Scholar 

  • Seo TS, Bai X, Kim DH et al (2005) Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. Proc Natl Acad Sci U S A 102:5926–5931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shendure J, Balasubramanian S, Church GM et al (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353

    CAS  PubMed  Google Scholar 

  • Shrestha S, Zhang C, Jerde CR et al (2018) Gene-specific variant classifier (DPYD-Varifier) to identify deleterious alleles of dihydropyrimidine dehydrogenase. Clin Pharmacol Ther 104:709–718

    CAS  PubMed  Google Scholar 

  • Siamoglou S, Koromina M, Hishinuma E et al (2022) Identification and functional validation of novel pharmacogenomic variants using a next-generation sequencing-based approach for clinical pharmacogenomics. Pharmacol Res. https://doi.org/10.1016/j.phrs.2022.106087

  • Sudmant PH, Rausch T, Gardner EJ et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526:75–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suiter CC, Moriyama T, Matreyek KA et al (2020) Massively parallel variant characterization identifies NUDT15 alleles associated with thiopurine toxicity. Proc Natl Acad Sci U S A 117:5394–5401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tafazoli A, Guchelaar H-J, Miltyk W et al (2021) Applying next-generation sequencing platforms for pharmacogenomic testing in clinical practice. Front Pharmacol 12:693453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Saito T, Ito M et al (2014) Functional characterization of 21 CYP2C19 allelic variants for clopidogrel 2-oxidation. Pharmacogenomics J 15:26–32

    PubMed  Google Scholar 

  • Taliun D, Harris DN, Kessler MD et al (2021) Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590:290–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan O, Shrestha R, Cunich M, Schofield DJ (2018) Application of next-generation sequencing to improve cancer management: a review of the clinical effectiveness and cost-effectiveness. Clin Genet 93:533–544

    CAS  PubMed  Google Scholar 

  • Tasa T, Krebs K, Kals M et al (2019) Genetic variation in the Estonian population: pharmacogenomics study of adverse drug effects using electronic health records. Eur J Hum Genet 27:442–454

    CAS  PubMed  Google Scholar 

  • Ujiie S, Sasaki T, Mizugaki M et al (2008) Functional characterization of 23 allelic variants of thiopurine S-methyltransferase gene (TPMT*2 – *24). Pharmacogenet Genomics 18:887–893

    CAS  PubMed  Google Scholar 

  • UK10K Consortium (2015) The UK10K project identifies rare variants in health and disease. Nature 526:82–90

    Google Scholar 

  • Van der Lee M, Rowell WJ, Menafra R et al (2021) Application of long-read sequencing to elucidate complex pharmacogenomic regions: a proof of principle. Pharmacogenomics J:1–7

    Google Scholar 

  • Van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C (2018) The third revolution in sequencing technology. Trends Genet 34:666–681

    PubMed  Google Scholar 

  • Van Driest SL, Shi Y, Bowton EA et al (2014) Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin Pharmacol Ther 95:423–431

    PubMed  Google Scholar 

  • Verbelen M, Weale ME, Lewis CM (2017) Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharmacogenomics J 17:395–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhao Y, Bollas A et al (2021a) Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 39:1348–1365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dhindsa RS, Carss K et al (2021b) Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature 597:527–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woolfe A, Mullikin JC, Elnitski L (2010) Genomic features defining exonic variants that modulate splicing. Genome Biol 11:R20

    PubMed  PubMed Central  Google Scholar 

  • Wright GEB, Carleton B, Hayden MR, Ross CJD (2018) The global spectrum of protein-coding pharmacogenomic diversity. Pharmacogenomics J 18:187–195

    CAS  PubMed  Google Scholar 

  • Wu Y, Liu H, Li R et al (2021) Improved pathogenicity prediction for rare human missense variants. Am J Hum Genet 108:1891–1906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Q, Zhou Y, Lauschke VM (2020) Ethnogeographic and inter-individual variability of human ABC transporters. Hum Genet 139:623–646

    PubMed  PubMed Central  Google Scholar 

  • Xiong HY, Alipanahi B, Lee LJ et al (2015) RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347:1254806

    PubMed  Google Scholar 

  • Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11:377–394

    CAS  PubMed  Google Scholar 

  • Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141

    CAS  PubMed  Google Scholar 

  • Zhang B, Lauschke VM (2019) Genetic variability and population diversity of the human SLCO (OATP) transporter family. Pharmacol Res 139:550–559

    CAS  PubMed  Google Scholar 

  • Zhang F, Lupski JR (2015) Non-coding genetic variants in human disease. Hum Mol Genet 24:R102–R110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Jain C, Aluru S (2020a) A comprehensive evaluation of long read error correction methods. BMC Genomics 21:889

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Sarangi V, Moon I et al (2020b) CYP2C9 and CYP2C19: deep mutational scanning and functional characterization of genomic missense variants. Clin Transl Sci 13:727–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y (2021) Assessing the importance of rare genetic variants for drug response. Doctoral thesis, Karolinska Institutet, Stockholm, Sweden. Retrieved from https://openarchive.ki.se/xmlui/handle/10616/47751

  • Zhou Y, Lauschke VM (2021) Computational tools to assess the functional consequences of rare and noncoding pharmacogenetic variability. Clin Pharmacol Ther 110:626–636

    PubMed  Google Scholar 

  • Zhou J, Troyanskaya OG (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 12:931–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Fujikura K, Mkrtchian S, Lauschke VM (2018) Computational methods for the pharmacogenetic interpretation of next generation sequencing data. Front Pharmacol 9:1437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Mkrtchian S, Kumondai M et al (2019) An optimized prediction framework to assess the functional impact of pharmacogenetic variants. Pharmacogenomics J 19:115–126

    CAS  PubMed  Google Scholar 

  • Zhou Y, Hernandez CD, Lauschke VM (2020) Population-scale predictions of DPD and TPMT phenotypes using a quantitative pharmacogene-specific ensemble classifier. Br J Cancer 123:1782–1789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Arribas GH, Turku A et al (2021a) Rare genetic variability in human drug target genes modulates drug response and can guide precision medicine. Sci Adv 7:eabi6856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Krebs K, Milani L, Lauschke VM (2021b) Global frequencies of clinically important HLA alleles and their implications for the cost-effectiveness of preemptive pharmacogenetic testing. Clin Pharmacol Ther 109:160–174

    PubMed  Google Scholar 

  • Zhu Y, Moriarty JP, Swanson KM et al (2021) A model-based cost-effectiveness analysis of pharmacogenomic panel testing in cardiovascular disease management: preemptive, reactive, or none? Genet Med 23:461–470

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the authors’ laboratory is funded by the Swedish Research Council [grant agreement numbers: 2016-01153, 2016-01154, and 2019-01837], by the EU/EFPIA/OICR/McGill/KTH/Diamond Innovative Medicines Initiative 2 Joint Undertaking (EUbOPEN grant number 875510), and by the European Union’s Horizon 2020 research and innovation program Ubiquitous Pharmacogenomics (grant agreement number 668353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker M. Lauschke .

Editor information

Editors and Affiliations

Ethics declarations

YZ and VML are co-founders and shareholders of PersoMedix AB. In addition, VML is the CEO and shareholder of HepaPredict AB and discloses consultancy work for Enginzyme AB.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Y., Lauschke, V.M. (2022). Challenges Related to the Use of Next-Generation Sequencing for the Optimization of Drug Therapy. In: Cascorbi, I., Schwab, M. (eds) Precision Medicine. Handbook of Experimental Pharmacology, vol 280. Springer, Cham. https://doi.org/10.1007/164_2022_596

Download citation

Publish with us

Policies and ethics