Skip to main content

Islet Inflammation and β Cell Dysfunction in Type 2 Diabetes

  • Chapter
  • First Online:
From Obesity to Diabetes

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 274))

Abstract

Pancreatic islets are the body’s central rheostat that regulates glucose homeostasis through the production of different hormones, including β cell-derived insulin. During obesity-induced type 2 diabetes (T2D), islet β cells become dysfunctional and inadequate insulin secretion no longer ensures glycemic control. T2D is associated with a chronic low-grade inflammation that manifests in several metabolic organs including the pancreatic islets. Growing evidence suggests that components of the innate immune system, and especially macrophages, play a crucial role in regulating islet homeostasis. Yet, the phenotypes and functions of islet macrophages in physiology and during T2D have only started to attract attention and remain unclear. In this review, the current knowledge about islet inflammation and macrophages will be summarized in humans and rodent models. Recent findings on the cellular and molecular mechanisms involved in islet remodeling and β cell function during obesity and T2D will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguayo-Mazzucato C, Bonner-Weir S (2018) Pancreatic beta cell regeneration as a possible therapy for diabetes. Cell Metab 27:57–67

    Article  CAS  PubMed  Google Scholar 

  • Agudo J et al (2012) Vascular endothelial growth factor-mediated islet hypervascularization and inflammation contribute to progressive reduction of beta-cell mass. Diabetes 61:2851–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlqvist E, Prasad RB, Groop L (2020) Subtypes of type 2 diabetes determined from clinical parameters. Diabetes 69:2086–2093

    Article  CAS  PubMed  Google Scholar 

  • Avrahami D et al (2020) Single-cell transcriptomics of human islet ontogeny defines the molecular basis of beta-cell dedifferentiation in T2D. Mol Metab 42:101057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banaei-Bouchareb L et al (2004) Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J Leukoc Biol 76:359–367

    Article  CAS  PubMed  Google Scholar 

  • Blencowe M et al (2021) IAPP-induced beta cell stress recapitulates the islet transcriptome in type 2 diabetes. Diabetologia 65:173–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Boni-Schnetzler M et al (2008) Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocrinol Metab 93:4065–4074

    Article  PubMed  PubMed Central  Google Scholar 

  • Boni-Schnetzler M et al (2009) Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150:5218–5229

    Article  CAS  PubMed  Google Scholar 

  • Boni-Schnetzler M et al (2018) Beta cell-specific deletion of the IL-1 receptor antagonist impairs beta cell proliferation and insulin secretion. Cell Rep 22:1774–1786

    Article  CAS  PubMed  Google Scholar 

  • Boni-Schnetzler M et al (2021) IL-1beta promotes the age-associated decline of beta cell function. iScience 24:103250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke SJ et al (2018) Pancreatic deletion of the interleukin-1 receptor disrupts whole body glucose homeostasis and promotes islet beta-cell de-differentiation. Mol Metab 14:95–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher MJ et al (2014) Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia 57:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler AE et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  CAS  PubMed  Google Scholar 

  • Calderon B et al (2015) The pancreas anatomy conditions the origin and properties of resident macrophages. J Exp Med 212:1497–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrero JA et al (2017) Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proc Natl Acad Sci U S A 114:E10418–E10427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JY et al (2013) Failure of the adaptive unfolded protein response in islets of obese mice is linked with abnormalities in beta-cell gene expression and progression to diabetes. Diabetes 62:1557–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JY et al (2019) Macrophage alterations in islets of obese mice linked to beta cell disruption in diabetes. Diabetologia 62:993–999

    Article  CAS  PubMed  Google Scholar 

  • Chittezhath M et al (2019) Islet macrophages are associated with islet vascular remodeling and compensatory hyperinsulinemia during diabetes. Am J Physiol Endocrinol Metab 317:E1108–E1120

    Article  CAS  PubMed  Google Scholar 

  • Cohrs CM et al (2020) Dysfunction of persisting beta cells is a key feature of early type 2 diabetes pathogenesis. Cell Rep 31:107469

    Article  CAS  PubMed  Google Scholar 

  • Cucak H, Grunnet LG, Rosendahl A (2014) Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J Leukoc Biol 95:149–160

    Article  PubMed  Google Scholar 

  • Dalmas E et al (2017) Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity 47:928–942 e7

    Article  CAS  PubMed  Google Scholar 

  • Denroche HC et al (2021) T cells accumulate in non-diabetic islets during ageing. Immun Ageing 18:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Gutierrez G, Xin Y, Gromada J (2019) Heterogeneity of human pancreatic beta-cells. Mol Metab 27S:S7–S14

    Article  PubMed  Google Scholar 

  • Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107

    Article  CAS  PubMed  Google Scholar 

  • Donath MY, Dinarello CA, Mandrup-Poulsen T (2019) Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol 19:734–746

    Article  CAS  PubMed  Google Scholar 

  • Dror E et al (2017) Postprandial macrophage-derived IL-1beta stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol 18:283–292

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi AG et al (2020) Beta cell identity changes with mild hyperglycemia: implications for function, growth, and vulnerability. Mol Metab. 35:100959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eguchi K et al (2012) Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab 15:518–533

    Article  CAS  PubMed  Google Scholar 

  • Ehses JA et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370

    Article  CAS  PubMed  Google Scholar 

  • Eizirik DL, Korbutt GS, Hellerstrom C (1992) Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the beta-cell function. J Clin Invest 90:1263–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris ST et al (2017) The islet-resident macrophage is in an inflammatory state and senses microbial products in blood. J Exp Med 214:2369–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furman D et al (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25:1822–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerst F et al (2017) Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 60:2240–2251

    Article  CAS  PubMed  Google Scholar 

  • Gerst F et al (2019) What role do fat cells play in pancreatic tissue? Mol Metab 25:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    Article  CAS  PubMed  Google Scholar 

  • Guilliams M et al (2020) Establishment and maintenance of the macrophage niche. Immunity 52:434–451

    Article  CAS  PubMed  Google Scholar 

  • Hajmrle C et al (2016) Interleukin-1 signaling contributes to acute islet compensation. JCI Insight 1:e86055

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasnain SZ et al (2014) Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat Med 20:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • He W, Yuan T, Maedler K (2019) Macrophage-associated pro-inflammatory state in human islets from obese individuals. Nutr Diabetes 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Herder C et al (2021) Differences in biomarkers of inflammation between novel subgroups of recent-onset diabetes. Diabetes 70:1198–1208

    Article  CAS  PubMed  Google Scholar 

  • Homo-Delarche F et al (2006) Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 55:1625–1633

    Article  CAS  PubMed  Google Scholar 

  • Horii T et al (2020) Islet inflammation is associated with pancreatic fatty infiltration and hyperglycemia in type 2 diabetes. BMJ Open Diabetes Res Care 8

    Google Scholar 

  • Hume DA et al (1984) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc Natl Acad Sci U S A 81:4174–4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter CS, Stein RW (2017) Evidence for loss in identity, de-differentiation, and trans-differentiation of islet beta-cells in type 2 diabetes. Front Genet 8:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Igoillo-Esteve M et al (2010) Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53:1395–1405

    Article  CAS  PubMed  Google Scholar 

  • Janjuha S et al (2018) Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish. Elife 7

    Google Scholar 

  • Ji J et al (2019a) Type 2 diabetes is associated with suppression of autophagy and lipid accumulation in beta-cells. J Cell Mol Med 23:2890–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Y et al (2019b) Toll-like receptors TLR2 and TLR4 block the replication of pancreatic beta cells in diet-induced obesity. Nat Immunol 20:677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdan T et al (2013) Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 19:1132–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn BB (1998) Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell 92:593–596

    Article  CAS  PubMed  Google Scholar 

  • Kamata K et al (2014) Islet amyloid with macrophage migration correlates with augmented beta-cell deficits in type 2 diabetic patients. Amyloid 21:191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kammoun HL et al (2018) Evidence against a role for NLRP3-driven islet inflammation in db/db mice. Mol Metab 10:66–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatsuka A, Kou S, Makino H (2018) IAPP/amylin and beta-cell failure: implication of the risk factors of type 2 diabetes. Diabetol Int 9:143–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleinert M et al (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14:140–162

    Article  PubMed  Google Scholar 

  • Lawlor N et al (2017) Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res 27:208–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y et al (1994) Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A 91:10878–10882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N et al (2019) Aging and stress induced beta cell senescence and its implication in diabetes development. Aging (Albany NY) 11:9947–9959

    Article  CAS  Google Scholar 

  • Lu TT et al (2018) The polycomb-dependent epigenome controls beta cell dysfunction, dedifferentiation, and diabetes. Cell Metab 27:1294–1308 e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg M et al (2017) Insulitis in human diabetes: a histological evaluation of donor pancreases. Diabetologia 60:346–353

    Article  CAS  PubMed  Google Scholar 

  • Maedler K et al (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdi T et al (2012) Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 16:625–633

    Article  CAS  PubMed  Google Scholar 

  • Marcelin G, Gautier EL, Clement K (2021) Adipose tissue fibrosis in obesity: etiology and challenges. Annu Rev Physiol

    Google Scholar 

  • Marroqui L et al (2015) Pancreatic alpha cells are resistant to metabolic stress-induced apoptosis in type 2 diabetes. EBioMedicine 2:378–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Marselli L et al (2020) Persistent or transient human beta cell dysfunction induced by metabolic stress: specific signatures and shared gene expression with type 2 diabetes. Cell Rep 33:108466

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Martino L et al (2015) Mast cells infiltrate pancreatic islets in human type 1 diabetes. Diabetologia 58:2554–2562

    Article  CAS  PubMed  Google Scholar 

  • Masters SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier JJ, Bonadonna RC (2013) Role of reduced beta-cell mass versus impaired beta-cell function in the pathogenesis of type 2 diabetes. Diabetes Care 36(Suppl 2):S113–S119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier DT et al (2014) Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice. Diabetologia 57:1884–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezza T et al (2019) Beta-cell fate in human insulin resistance and type 2 diabetes: a perspective on islet plasticity. Diabetes 68:1121–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nackiewicz D et al (2014) TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair beta cell insulin gene expression via IL-1 and IL-6. Diabetologia 57:1645–1654

    Article  CAS  PubMed  Google Scholar 

  • Nordmann TM et al (2017) The role of inflammation in beta-cell dedifferentiation. Sci Rep 7:6285

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad RB, Groop L (2015) Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel) 6:87–123

    Article  CAS  Google Scholar 

  • Radenkovic M et al (2017) Characterization of resident lymphocytes in human pancreatic islets. Clin Exp Immunol 187:418–427

    Article  CAS  PubMed  Google Scholar 

  • Richardson SJ et al (2009) Islet-associated macrophages in type 2 diabetes. Diabetologia 52:1686–1688

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Calvo T et al (2014) Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes 63:3880–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui J et al (2017) Beta cells that resist immunological attack develop during progression of autoimmune diabetes in NOD mice. Cell Metab 25:727–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeedi P et al (2020) Mortality attributable to diabetes in 20-79 years old adults, 2019 estimates: results from the international diabetes federation diabetes atlas, 9(th) edition. Diabetes Res Clin Pract 162:108086

    Article  PubMed  Google Scholar 

  • Sasaki H et al (2021) Reduced beta cell number rather than size is a major contributor to beta cell loss in type 2 diabetes. Diabetologia 64:1816–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segerstolpe A et al (2016) Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 24:593–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirdah MM, Reading NS (2020) Genetic predisposition in type 2 diabetes: a promising approach toward a personalized management of diabetes. Clin Genet 98:525–547

    Article  CAS  PubMed  Google Scholar 

  • Solimena M et al (2018) Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 61:641–657

    Article  CAS  PubMed  Google Scholar 

  • Stancill JS et al (2021) Single-cell RNA sequencing of mouse islets exposed to proinflammatory cytokines. Life Sci Alliance 4

    Google Scholar 

  • Taneera J et al (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16:122–134

    Article  CAS  PubMed  Google Scholar 

  • Tesi M et al (2021) Pro-inflammatory cytokines induce insulin and glucagon double positive human islet cells that are resistant to apoptosis. Biomol Ther 11

    Google Scholar 

  • Tong X, Stein R (2021) Lipid droplets protect human beta cells from lipotoxic-induced stress and cell identity changes. Diabetes 70(11):2595–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X et al (2020) Lipid droplet accumulation in human pancreatic islets is dependent on both donor age and health. Diabetes 69:342–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tushuizen ME et al (2007) Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 30:2916–2921

    Article  CAS  PubMed  Google Scholar 

  • Wan X et al (2018) Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature 560:107–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YJ et al (2016) Single-cell transcriptomics of the human endocrine pancreas. Diabetes 65:3028–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver JR et al (2021) An increase in inflammation and islet dysfunction is a feature of prediabetes. Diabetes Metab Res Rev 37:e3405

    Article  CAS  PubMed  Google Scholar 

  • Weir GC (2020) Glucolipotoxicity, beta-cells, and diabetes: the emperor has no clothes. Diabetes 69:273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitz JR et al (2020) Secretory functions of macrophages in the human pancreatic islet are regulated by endogenous purinergic signaling. Diabetes 69:1206–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen H et al (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westwell-Roper C et al (2011) IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol 187:2755–2765

    Article  CAS  PubMed  Google Scholar 

  • Wigger L et al (2021) Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes. Nat Metab 3:1017–1031

    Article  CAS  PubMed  Google Scholar 

  • Wu M et al (2021) Single-cell analysis of the human pancreas in type 2 diabetes using multi-spectral imaging mass cytometry. Cell Rep 37:109919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin Y et al (2016) RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab 24:608–615

    Article  CAS  PubMed  Google Scholar 

  • Ying W et al (2019) Expansion of islet-resident macrophages leads to inflammation affecting beta cell proliferation and function in obesity. Cell Metab 29:457–474 e5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the ATIP-Avenir and Emergence (Ville de Paris) Programmes and the EFSD/Novo Nordisk Programme for Diabetes Research in Europe to ED.

Conflict of Interest Statement

Nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise Dalmas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuenco, J., Dalmas, E. (2022). Islet Inflammation and β Cell Dysfunction in Type 2 Diabetes. In: Eckel, J., Clément, K. (eds) From Obesity to Diabetes. Handbook of Experimental Pharmacology, vol 274. Springer, Cham. https://doi.org/10.1007/164_2021_571

Download citation

Publish with us

Policies and ethics