Skip to main content

The Role of ATP and Purinergic Receptors in Taste Signaling

  • Chapter
  • First Online:
The Pharmacology of Taste

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 275))

Abstract

This review summarizes our understanding of ATP signaling in taste and describes new directions for research. ATP meets all requisite criteria to be considered a neurotransmitter: (1) presence in taste cells, as in all cells; (2) release upon appropriate taste stimulation; (3) binding to cognate purinergic receptors P2X2 and P2X3 on gustatory afferent neurons, and (4) after release, enzymatic degradation to adenosine and other nucleotides by the ectonucleotidase, NTPDase2, expressed on the Type I, glial-like cells in the taste bud. Importantly, double knockout of P2X2 and P2X3 or pharmacological inhibition of P2X3 abolishes transmission of all taste qualities. In Type II taste cells (those that respond to sweet, bitter, or umami stimuli), ATP is released non-vesicularly by a large conductance ion channel composed of CALHM1 and CALHM3, which form a so-called channel synapse at areas of contact with afferent taste nerve fibers. Although ATP release has been detected only from Type II cells, it is also required for the transmission of salty and sour stimuli, which are mediated primarily by the Type III taste cells. The source of the ATP required for Type III cell signaling to afferent fibers is still unclear and is a focus for future experiments. The ionotropic purinergic receptor, P2X3, is widely expressed on many sensory afferents and has been a therapeutic target for treating chronic cough and pain. However, its requirement for taste signaling has complicated efforts at treatment since patients given P2X3 antagonists report substantial disturbances of taste and become non-compliant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulqawi R, Dockry R, Holt K, Layton G, McCarthy BG, Ford AP, Smith JA (2015) P2X3 receptor antagonist (AF-219) in refractory chronic cough: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 385(9974):1198–1205

    CAS  PubMed  Google Scholar 

  • Barreiro-Iglesias A, Villar-Cervino V, Villar-Cheda B, Anadon R, Rodicio MC (2008) Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates. J Comp Neurol 511(4):438–453

    CAS  PubMed  Google Scholar 

  • Bartel DL, Sullivan SL, Lavoie EG, Sevigny J, Finger TE (2006) Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J Comp Neurol 497(1):1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bo X, Alavi A, Xiang Z, Oglesby I, Ford A, Burnstock G (1999) Localization of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds. Neuroreport 10(5):1107–1111

    CAS  PubMed  Google Scholar 

  • Cao Y, Zhao FL, Kolli T, Hivley R, Herness S (2009) GABA expression in the mammalian taste bud functions as a route of inhibitory cell-to-cell communication. Proc Natl Acad Sci U S A 106(10):4006–4011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407(6807):1011–1015

    CAS  PubMed  Google Scholar 

  • Dando R, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2012) Adenosine enhances sweet taste through A2B receptors in the taste bud. J Neurosci 32(1):322–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dvoryanchikov G, Tomchik SM, Chaudhari N (2007) Biogenic amine synthesis and uptake in rodent taste buds. J Comp Neurol 505(3):302–313

    CAS  PubMed  Google Scholar 

  • Dvoryanchikov G, Sinclair MS, Perea-Martinez I, Wang T, Chaudhari N (2009) Inward rectifier channel, ROMK, is localized to the apical tips of glial-like cells in mouse taste buds. J Comp Neurol 517(1):1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dvoryanchikov G, Hernandez D, Roebber JK, Hill DL, Roper SD, Chaudhari N (2017) Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion. Nat Commun 8(1):760

    PubMed  PubMed Central  Google Scholar 

  • Finger T, High B (2020) Absence of P2X2 purinergic receptors in human taste bud innervation. Eur Respir J 56(suppl 64):2575

    Google Scholar 

  • Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310(5753):1495–1499

    CAS  PubMed  Google Scholar 

  • Ford AP (2012) In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. Purinergic Signal 8(Suppl 1):3–26

    CAS  PubMed  Google Scholar 

  • Friedrich C, Francke K, Birring SS, Van Den Berg JWK, Marsden P, Mcgarvey L, Turner A, Wielders P, Gashaw I, Klein S, Morice A (2020) Safety and efficacy of P2X3 antagonist BAY 1902607 in refractory chronic cough. Eur Respir J 56(suppl 64):4566

    Google Scholar 

  • Garceau D, Chauret N (2019) BLU-5937: a selective P2X3 antagonist with potent anti-tussive effect and no taste alteration. Pulm Pharmacol Ther 56:56–62

    CAS  PubMed  Google Scholar 

  • Hallock RM, Tatangelo M, Barrows J, Finger TE (2009) Residual chemosensory capabilities in double P2X2/P2X3 purinergic receptor null mice: intraoral or postingestive detection? Chem Senses 34(9):799–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang AY, Wu SY (2015) Calcitonin gene-related peptide reduces taste-evoked ATP secretion from mouse taste buds. J Neurosci 35(37):12714–12724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang AY, Wu SY (2018) Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds. Br J Pharmacol 175(7):1039–1053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YJ, Maruyama Y, Lu KS, Pereira E, Plonsky I, Baur JE, Wu D, Roper SD (2005a) Mouse taste buds use serotonin as a neurotransmitter. J Neurosci 25(4):843–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YJ, Maruyama Y, Lu KS, Pereira E, Roper SD (2005b) Mouse taste buds release serotonin in response to taste stimuli. Chem Senses 30(Suppl 1):i39–i40

    CAS  PubMed  Google Scholar 

  • Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci U S A 104(15):6436–6441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YA, Maruyama Y, Roper SD (2008) Norepinephrine is coreleased with serotonin in mouse taste buds. J Neurosci 28(49):13088–13093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YA, Dando R, Roper SD (2009) Autocrine and paracrine roles for ATP and serotonin in mouse taste buds. J Neurosci 29(44):13909–13918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YA, Pereira E, Roper SD (2011a) Acid stimulation (sour taste) elicits GABA and serotonin release from mouse taste cells. PLoS One 6(10):e25471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YA, Stone LM, Pereira E, Yang R, Kinnamon JC, Dvoryanchikov G, Chaudhari N, Finger TE, Kinnamon SC, Roper SD (2011b) Knocking out P2X receptors reduces transmitter secretion in taste buds. J Neurosci 31(38):13654–13661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwayama T, Nada O (1967) Histochemically demonstrable ATPase activity in the taste buds of the rat. Exp Cell Res 46(3):607–608

    CAS  PubMed  Google Scholar 

  • Kataoka S, Baquero A, Yang D, Shultz N, Vandenbeuch A, Ravid K, Kinnamon SC, Finger TE (2012) A2BR adenosine receptor modulates sweet taste in circumvallate taste buds. PLoS One 7(1):e30032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinnamon SC, Finger TE (2019) Recent advances in taste transduction and signaling. F1000Res 8. https://doi.org/10.12688/f1000research.21099.1

  • Kirino M, Parnes J, Hansen A, Kiyohara S, Finger TE (2013) Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors. Open Biol 3(3):130015

    PubMed  PubMed Central  Google Scholar 

  • Kusakabe T, Matsuda H, Gono Y, Furukawa M, Hiruma H, Kawakami T, Tsukuda M, Takenaka T (1998) Immunohistochemical localisation of regulatory neuropeptides in human circumvallate papillae. J Anat 192(Pt 4):557–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson ED, Vandenbeuch A, Voigt A, Meyerhof W, Kinnamon SC, Finger TE (2015) The role of 5-HT3 receptors in signaling from taste buds to nerves. J Neurosci 35(48):15984–15995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson ED, Vandenbeuch A, Anderson CB, Kinnamon SC (2020) Function, innervation, and neurotransmitter signaling in mice lacking type-II taste cells. eNeuro 7(1). https://doi.org/10.1523/ENEURO.0339-19.2020

  • Lewandowski BC, Sukumaran SK, Margolskee RF, Bachmanov AA (2016) Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms. J Neurosci. 36(6):1942–1953. https://doi.org/10.1523/JNEUROSCI.2947-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CS, Smith DV (1997) Glutamate receptor antagonists block gustatory afferent input to the nucleus of the solitary tract. J Neurophysiol 77(3):1514–1525

    CAS  PubMed  Google Scholar 

  • Ma Z, Taruno A, Ohmoto M, Jyotaki M, Lim JC, Miyazaki H, Niisato N, Marunaka Y, Lee RJ, Hoff H, Payne R, Demuro A, Parker I, Mitchell CH, Henao-Mejia J, Tanis JE, Matsumoto I, Tordoff MG, Foskett JK (2018) CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCR-mediated tastes. Neuron 98(3):547–561.e510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moehring F, Cowie AM, Menzel AD et al (2018) Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. Elife 2018(7):e31684. https://doi.org/10.7554/eLife.31684

    Article  Google Scholar 

  • Murata Y, Yasuo T, Yoshida R, Obata K, Yanagawa Y, Margolskee RF, Ninomiya Y (2010) Action potential-enhanced ATP release from taste cells through hemichannels. J Neurophysiol 104(2):896–901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nada O, Hirata K (1975) The occurrence of the cell type containing a specific monoamine in the taste bud of the rabbit’s foliate papila. Histochemistry 43(3):237–240

    CAS  PubMed  Google Scholar 

  • Nada O, Hirata K (1977) The monoamine-containing cell in the gustatory epithelium of some vertebrates. Arch Histol Jpn 40(Suppl):197–206

    CAS  PubMed  Google Scholar 

  • Nada O, Iwayama T (1969) Histochemical observation on the phosphatase activities of the differentiating taste bud. Anat Rec 165(1):61–66

    CAS  PubMed  Google Scholar 

  • Nomura K, Nakanishi M, Ishidate F, Iwata K, Taruno A (2020) All-electrical ca(2+)-independent signal transduction mediates attractive sodium taste in taste buds. Neuron 106(5):816–829.e816

    CAS  PubMed  Google Scholar 

  • Ohkuri T, Horio N, Stratford JM, Finger TE, Ninomiya Y (2012) Residual chemoresponsiveness to acids in the superior laryngeal nerve in “taste-blind” (P2X2/P2X3 double-KO) mice. Chem Senses 37(6):523–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oka Y, Butnaru M, von Buchholtz L, Ryba NJ, Zuker CS (2013) High salt recruits aversive taste pathways. Nature 494(7438):472–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roebber JK, Roper SD, Chaudhari N (2019) The Role of the Anion in Salt (NaCl) Detection by Mouse Taste Buds. J Neurosci 39(32):6224–6232. https://doi.org/10.1523/JNEUROSCI.2367-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS (2007) Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 26(3):657–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romanov RA, Rogachevskaja OA, Khokhlov AA, Kolesnikov SS (2008) Voltage dependence of ATP secretion in mammalian taste cells. J Gen Physiol 132(6):731–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romanov RA, Lasher RS, High B, Savidge LE, Lawson A, Rogachevskaja OA, Zhao H, Rogachevsky VV, Bystrova MF, Churbanov GD, Adameyko I, Harkany T, Yang R, Kidd GJ, Marambaud P, Kinnamon JC, Kolesnikov SS, Finger TE (2018) Chemical synapses without synaptic vesicles: purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Sci Signal 11(529):eaao1815

    PubMed  PubMed Central  Google Scholar 

  • Roper SD (2007) Signal transduction and information processing in mammalian taste buds. Pflugers Arch 454(5):759–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roper SD (2013) Taste buds as peripheral chemosensory processors. Semin Cell Dev Biol 24(1):71–79

    CAS  PubMed  Google Scholar 

  • Roper SD (2021) Chemical and electrical synaptic interactions among taste bud cells. Curr Opin Physiol 20:118–125. https://doi.org/10.1016/j.cophys.2020.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Roper SD, Chaudhari N (2017) Taste buds: cells, signals and synapses. Nat Rev Neurosci 18(8):485–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Royer SM, Kinnamon JC (1988) Ultrastructure of mouse foliate taste buds: synaptic and nonsynaptic interactions between taste cells and nerve fibers. J Comp Neurol 270(1):11–24, 58-19

    CAS  PubMed  Google Scholar 

  • Smeraski CA, Dunwiddie TV, Diao LH, Magnusson KR, Finger TE (1996) Glutamate receptors mediate synaptic responses in the primary gustatory nucleus in goldfish. Abstr Soc Neurosci 22

    Google Scholar 

  • Smith JA, Kitt MM, Butera P, Smith SA, Li Y, Xu ZJ, Holt K, Sen S, Sher MR, Ford AP (2020) Gefapixant in two randomised dose-escalation studies in chronic cough. Eur Respir J 55(3):1901615

    CAS  PubMed  Google Scholar 

  • Taruno A (2018) ATP release channels. Int J Mol Sci 19(3):808

    PubMed Central  Google Scholar 

  • Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G, Tordoff MG, Marambaud P, Foskett JK (2013) CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495(7440):223–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taruno A, Nomura K, Kusakizako T, Ma Z, Nureki O, Foskett JK (2021) Taste transduction and channel synapses in taste buds. Pflugers Arch 473(1):3–13

    CAS  PubMed  Google Scholar 

  • Teng B, Wilson CE, Tu YH, Joshi NR, Kinnamon SC, Liman ER (2019) Cellular and neural responses to sour stimuli require the proton channel otop1. Curr Biol 29(21):3647–3656.e3645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usami SI, Takumi Y, Matsubara A, Fujita S, Ottersen OP (2001) Neurotransmission in the vestibular endorgans--glutamatergic transmission in the afferent synapses of hair cells. Biol Sci Space 15(4):367–370

    CAS  PubMed  Google Scholar 

  • Vandenbeuch A, Zorec R, Kinnamon SC (2010) Capacitance measurements of regulated exocytosis in mouse taste cells. J Neurosci 30(44):14695–14701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbeuch A, Anderson CB, Parnes J, Enjyoji K, Robson SC, Finger TE, Kinnamon SC (2013) Role of the ectonucleotidase NTPDase2 in taste bud function. Proc Natl Acad Sci U S A 110(36):14789–14794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbeuch A, Larson ED, Anderson CB, Smith SA, Ford AP, Finger TE, Kinnamon SC (2015) Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice. J Physiol 593(5):1113–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbeuch A, Wilson CE, Kinnamon SC (2020) Optogenetic activation of type III taste cells modulates taste responses. Chem Senses 45(7):533–539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang RB, Dzowo YK, Wilson CE, Russell RL, Kidd GJ, Salcedo E, Lasher RS, Kinnamon JC, Finger TE (2020) Three-dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. cell types and the apical region of the taste bud. J Comp Neurol 528(5):756–771

    CAS  PubMed  Google Scholar 

  • Yu T, Wilson CE, Stratford JM, Finger TE (2020) Genetic deletion of TrpV1 and TrpA1 does not Alter avoidance of or patterns of brainstem activation to citric acid in mice. Chem Senses 45(7):573–579

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding: This work has been supported by grants DC014728 to TEF and DC012555 and DC017679 to S. Kinnamon from the National Institute on Deafness and Other Communication Disorders of NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sue Kinnamon or Thomas Finger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kinnamon, S., Finger, T. (2021). The Role of ATP and Purinergic Receptors in Taste Signaling. In: Palmer, R.K., Servant, G. (eds) The Pharmacology of Taste . Handbook of Experimental Pharmacology, vol 275. Springer, Cham. https://doi.org/10.1007/164_2021_518

Download citation

Publish with us

Policies and ethics