Skip to main content

Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 258))

Abstract

Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field’s current understanding of nicotine’s actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine’s direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alkondon M, Albuquerque EX (2001) Nicotinic acetylcholine receptor alpha7 and alpha4beta2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. J Neurophysiol 86:3043–3055

    Article  CAS  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Barbosa CT, Albuquerque EX (1997) Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices. J Pharmacol Exp Ther 283:1396–1411

    CAS  PubMed  Google Scholar 

  • Alsharari SD, Siu EC, Tyndale RF, Damaj MI (2014) Pharmacokinetic and pharmacodynamics studies of nicotine after oral administration in mice: effects of methoxsalen, a CYP2A5/6 inhibitor. Nicotine Tob Res 16:18–25

    Article  CAS  PubMed  Google Scholar 

  • Alsharari SD, King JR, Nordman JC, Muldoon PP, Jackson A, Zhu AZ, Tyndale RF, Kabbani N, Damaj MI (2015) Effects of menthol on nicotine pharmacokinetic, pharmacology and dependence in mice. PLoS One 10:e0137070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arvaniti M, Jensen MM, Soni N, Wang H, Klein AB, Thiriet N, Pinborg LH, Muldoon PP, Wienecke J, Imad Damaj M, Kohlmeier KA, Gondre-Lewis MC, Mikkelsen JD, Thomsen MS (2016) Functional interaction between Lypd6 and nicotinic acetylcholine receptors. J Neurochem 138:806–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashare R (2019) Daily liraglutide for nicotine dependence. USNLB, ClinicalTrials.gov. NCT03712098

  • Ashare RL, Falcone M, Lerman C (2014) Cognitive function during nicotine withdrawal: implications for nicotine dependence treatment. Neuropharmacology 76(Pt B):581–591

    Article  CAS  PubMed  Google Scholar 

  • Ashoor A, Nordman JC, Veltri D, Yang KH, Al Kury L, Shuba Y, Mahgoub M, Howarth FC, Sadek B, Shehu A, Kabbani N, Oz M (2013) Menthol binding and inhibition of alpha7-nicotinic acetylcholine receptors. PLoS One 8:e67674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagdas D, Muldoon PP, Zhu AZ, Tyndale RF, Damaj MI (2014) Effects of methoxsalen, a CYP2A5/6 inhibitor, on nicotine dependence behaviors in mice. Neuropharmacology 85:67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardo MT, Green TA, Crooks PA, Dwoskin LP (1999) Nornicotine is self-administered intravenously by rats. Psychopharmacology 146:290–296

    Article  CAS  PubMed  Google Scholar 

  • Benowitz NL, Herrera B, Jacob P (2004) Mentholated cigarette smoking inhibits nicotine metabolism. J Pharmacol Exp Ther 310:1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, Waterworth D, Muglia P, Mooser V (2008) Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 13:368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, Saccone NL, Saccone SF, Bertelsen S, Fox L, Horton WJ, Breslau N, Budde J, Cloninger CR, Dick DM, Foroud T, Hatsukami D, Hesselbrock V, Johnson EO, Kramer J, Kuperman S, Madden PA, Mayo K, Nurnberger J Jr, Pomerleau O, Porjesz B, Reyes O, Schuckit M, Swan G, Tischfield JA, Edenberg HJ, Rice JP, Goate AM (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Broms U, Silventoinen K, Madden PAF, Heath AC, Kaprio J (2006) Genetic architecture of smoking behavior: a study of Finnish adult twins. Twin Res Hum Genet 9:64–72

    Article  PubMed  Google Scholar 

  • Caraballo RS, Holiday DB, Stellman SD, Mowery PD, Giovino GA, Muscat JE, Eriksen MP, Bernert JT, Richter PA, Kozlowski LT (2011) Comparison of serum cotinine concentration within and across smokers of menthol and nonmenthol cigarette brands among non-Hispanic black and non-Hispanic white U.S. adult smokers, 2001–2006. Cancer Epidemiol Biomarkers Prev 20:1329–1340

    Article  CAS  PubMed  Google Scholar 

  • Carmelli D, Swan GE, Robinette D, Fabsitz R (1992) Genetic influence on smoking – a study of male twins. New Engl J Med 327:829–833

    Article  CAS  PubMed  Google Scholar 

  • Carroll FI, Blough BE, Mascarella SW, Navarro HA, Lukas RJ, Damaj MI (2014) Bupropion and bupropion analogs as treatments for CNS disorders. Adv Pharmacol 69:177–216

    Article  CAS  PubMed  Google Scholar 

  • CDC (2015) Smoking-attributable mortality, years of potential life lost, and productivity losses – United States, 2000–2004. MMWR Morb Mortal Wkly Rep 57(45):1226–1228. Updated 4 Mar 2015

    Google Scholar 

  • Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23:7820–7829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Lena C, Le Novere N, Marubio L, Picciotto M, Zoli M (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev 26:198–216

    Article  CAS  PubMed  Google Scholar 

  • Claus ED, Blaine SK, Filbey FM, Mayer AR, Hutchison KE (2013) Association between nicotine dependence severity, BOLD response to smoking cues, and functional connectivity. Neuropsychopharmacology 38:2363–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens KJ, Caille S, Stinus L, Cador M (2009) The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats. Int J Neuropsychopharmacol 12:1355–1366

    Article  CAS  PubMed  Google Scholar 

  • Corrigall WA, Coen KM, Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653:278–284

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove KP, Esterlis I, McKee S, Bois F, Alagille D, Tamagnan GD, Seibyl JP, Krishnan-Sarin S, Staley JK (2010) Beta2∗ nicotinic acetylcholine receptors modulate pain sensitivity in acutely abstinent tobacco smokers. Nicotine Tob Res 12:535–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couey JJ, Meredith RM, Spijker S, Poorthuis RB, Smit AB, Brussaard AB, Mansvelder HD (2007) Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron 54:73–87

    Article  CAS  PubMed  Google Scholar 

  • Damaj MI, Kao W, Martin BR (2003) Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. J Pharmacol Exp Ther 307:526–534

    Article  CAS  PubMed  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Article  CAS  PubMed  Google Scholar 

  • Dani JA, Harris RA (2005) Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nat Neurosci 8:1465–1470

    Article  CAS  PubMed  Google Scholar 

  • Dani JA, Jenson D, Broussard JI, De Biasi M (2011) Neurophysiology of nicotine addiction. J Addict Res Ther S1. pii: 001

    Google Scholar 

  • De Biasi M, Dani JA (2011) Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci 34:105–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demars MP, Morishita H (2014) Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Mol Brain 7:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeVito EE, Krishnan-Sarin S (2018) E-cigarettes: impact of e-liquid components and device characteristics on nicotine exposure. Curr Neuropharmacol 16:438–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Chiara G (2000) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393:295–314

    Article  PubMed  Google Scholar 

  • Dodd S, Arancini L, Gomez-Coronado N, Gasser R, Lubman DI, Dean OM, Berk M (2018) Considerations when selecting pharmacotherapy for nicotine dependence. Expert Opin Pharmacother 20:1–6

    Google Scholar 

  • Dwoskin LP, Buxton ST, Jewell AL, Crooks PA (1993) S(−)-Nornicotine increases dopamine release in a calcium-dependent manner from superfused rat striatal slices. J Neurochem 60:2167–2174

    Article  CAS  PubMed  Google Scholar 

  • Dwoskin LP, Teng L, Buxton ST, Crooks PA (1999) (S)-(−)-Cotinine, the major brain metabolite of nicotine, stimulates nicotinic receptors to evoke [3H]dopamine release from rat striatal slices in a calcium-dependent manner. J Pharmacol Exp Ther 288:905–911

    CAS  PubMed  Google Scholar 

  • Fagan P, Pokhrel P, Herzog TA, Pagano IS, Franke AA, Clanton MS, Alexander LA, Trinidad DR, Sakuma KL, Johnson CA, Moolchan ET (2016) Nicotine metabolism in young adult daily menthol and nonmenthol smokers. Nicotine Tob Res 18:437–446

    Article  CAS  PubMed  Google Scholar 

  • FDA (2013) Preliminary scientific evaluation of the possible public health effects of menthol versus nonmenthol cigarettes. http://www.fda.gov/downloads/UCM361598.pdf. Accessed Apr 2017

  • Fisher ML, LeMalefant RM, Zhou L, Huang G, Turner JR (2017) Distinct roles of CREB within the ventral and dorsal Hippocampus in mediating nicotine withdrawal phenotypes. Neuropsychopharmacology 42:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37

    CAS  PubMed  Google Scholar 

  • Foddai M, Dosia G, Spiga S, Diana M (2004) Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 29:530–536

    Article  CAS  PubMed  Google Scholar 

  • Forget B, Scholze P, Langa F, Morel C, Pons S, Mondoloni S, Besson M, Durand-de Cuttoli R, Hay A, Tricoire L, Lambolez B, Mourot A, Faure P, Maskos U (2018) A human polymorphism in CHRNA5 is linked to relapse to nicotine seeking in transgenic rats. Curr Biol 28:3244–3253.e7

    Article  CAS  PubMed  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Shea C, Alexoff D, MacGregor RR, Schlyer DJ, Zezulkova I, Wolf AP (1996) Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci U S A 93:14065–14069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler JS, Wang GJ, Volkow ND, Franceschi D, Logan J, Pappas N, Shea C, MacGregor RR, Garza V (2000) Maintenance of brain monoamine oxidase B inhibition in smokers after overnight cigarette abstinence. Am J Psychiatry 157:1864–1866

    Article  CAS  PubMed  Google Scholar 

  • Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler CD, Tuesta L, Kenny PJ (2013) Role of alpha5∗ nicotinic acetylcholine receptors in the effects of acute and chronic nicotine treatment on brain reward function in mice. Psychopharmacology 229(3):503–513

    Article  CAS  Google Scholar 

  • Froeliger B, Kozink RV, Rose JE, Behm FM, Salley AN, McClernon FJ (2010) Hippocampal and striatal gray matter volume are associated with a smoking cessation treatment outcome: results of an exploratory voxel-based morphometric analysis. Psychopharmacology 210:577–583

    Article  CAS  PubMed  Google Scholar 

  • Garrison KA, O’Malley SS, Gueorguieva R, Krishnan-Sarin S (2018) A fMRI study on the impact of advertising for flavored e-cigarettes on susceptible young adults. Drug Alcohol Depend 186:233–241

    Article  PubMed  PubMed Central  Google Scholar 

  • George AA, Bloy A, Miwa JM, Lindstrom JM, Lukas RJ, Whiteaker P (2017) Isoform-specific mechanisms of alpha3beta4∗-nicotinic acetylcholine receptor modulation by the prototoxin lynx1. FASEB J 31:1398–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerzanich V, Wang F, Kuryatov A, Lindstrom J (1998) Alpha 5 subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J Pharmacol Exp Ther 286:311–320

    CAS  PubMed  Google Scholar 

  • Girod R, Role LW (2001) Long-lasting enhancement of glutamatergic synaptic transmission by acetylcholine contrasts with response adaptation after exposure to low-level nicotine. J Neurosci 21:5182–5190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goniewicz ML, Smith DM, Edwards KC, Blount BC, Caldwell KL, Feng J, Wang L, Christensen C, Ambrose B, Borek N, van Bemmel D, Konkel K, Erives G, Stanton CA, Lambert E, Kimmel HL, Hatsukami D, Hecht SS, Niaura RS, Travers M, Lawrence C, Hyland AJ (2018) Comparison of nicotine and toxicant exposure in users of electronic cigarettes and combustible cigarettes. JAMA Netw Open 1:e185937

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzales D, Rennard SI, Nides M, Oncken C, Azoulay S, Billing CB, Watsky EJ, Gong J, Williams KE, Reeves KR, Varenicline Phase 3 Study Group (2006) Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA 296:47–55

    Article  CAS  PubMed  Google Scholar 

  • Hall BJ, Wells C, Allenby C, Lin MY, Hao I, Marshall L, Rose JE, Levin ED (2014) Differential effects of non-nicotine tobacco constituent compounds on nicotine self-administration in rats. Pharmacol Biochem Behav 120:103–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris AC, Muelken P, Haave Z, Swain Y, Smethells JR, LeSage MG (2018) Propylene glycol, a major electronic cigarette constituent, attenuates the adverse effects of high-dose nicotine as measured by intracranial self-stimulation in rats. Drug Alcohol Depend 193:162–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann-Boyce J, Cahill K, Hatsukami D, Cornuz J (2012) Nicotine vaccines for smoking cessation. Cochrane Database Syst Rev 8:CD007072

    Google Scholar 

  • Hartmann-Boyce J, Chepkin SC, Ye W, Bullen C, Lancaster T (2018) Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst Rev 5:CD000146

    PubMed  Google Scholar 

  • Henderson BJ, Srinivasan R, Nichols WA, Dilworth CN, Gutierrez DF, Mackey ED, McKinney S, Drenan RM, Richards CI, Lester HA (2014) Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors. J Gen Physiol 143:51–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JA Jr, Zoli M, Bourgeois JP, Changeux JP (1993) Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J Neurosci 13:1551–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YY, Kandel ER, Levine A (2008) Chronic nicotine exposure induces a long-lasting and pathway-specific facilitation of LTP in the amygdala. Learn Mem 15:603–610

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibanez-Tallon I, Miwa JM, Wang HL, Adams NC, Crabtree GW, Sine SM, Heintz N (2002) Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynx1. Neuron 33:893–903

    Article  CAS  PubMed  Google Scholar 

  • Jackson KJ, Martin BR, Changeux JP, Damaj MI (2008) Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther 325:302–312

    Article  CAS  PubMed  Google Scholar 

  • Jackson KJ, Kota DH, Martin BR, Damaj MI (2009) The role of various nicotinic receptor subunits and factors influencing nicotine conditioned place aversion. Neuropharmacology 56:970–974

    Article  CAS  PubMed  Google Scholar 

  • Jackson KJ, Marks MJ, Vann RE, Chen X, Gamage TF, Warner JA, Damaj MI (2010) Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. J Pharmacol Exp Ther 334:137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson KJ, Sanjakdar SS, Muldoon PP, McIntosh JM, Damaj MI (2013) The alpha3beta4∗ nicotinic acetylcholine receptor subtype mediates nicotine reward and physical nicotine withdrawal signs independently of the alpha5 subunit in the mouse. Neuropharmacology 70:228–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31:131–141

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Khan P, Shin Y, Wang J, Lin L, Cameron MD, Lindstrom JM, Kenny PJ, Kamenecka TM (2014) Synthesis and activity of substituted heteroaromatics as positive allosteric modulators for alpha4beta2alpha5 nicotinic acetylcholine receptors. Bioorg Med Chem Lett 24:674–678

    Article  CAS  PubMed  Google Scholar 

  • John D, Berg DK (2015) Long-lasting changes in neural networks to compensate for altered nicotinic input. Biochem Pharmacol 97:418–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S, Yakel JL (1997) Functional nicotinic ACh receptors on interneurons in the rat hippocampus. J Physiol 504(Pt 3):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallupi M, Xue S, Zhou B, Janda KD, George O (2018) An enzymatic approach reverses nicotine dependence, decreases compulsive-like intake, and prevents relapse. Sci Adv 4:eaat4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassiou M, Eberl S, Meikle SR, Birrell A, Constable C, Fulham MJ, Wong DF, Musachio JL (2001) In vivo imaging of nicotinic receptor upregulation following chronic (−)-nicotine treatment in baboon using SPECT. Nucl Med Biol 28:165–175

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Thornton LM, Pedersen NL (2000) Tobacco consumption in Swedish twins reared apart and reared together. Arch Gen Psychiatry 57:886–892

    Article  CAS  PubMed  Google Scholar 

  • Kenney JW, Poole RL, Adoff MD, Logue SF, Gould TJ (2012) Learning and nicotine interact to increase CREB phosphorylation at the jnk1 promoter in the hippocampus. PLoS One 7:e39939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong G, Morean ME, Cavallo DA, Camenga DR, Krishnan-Sarin S (2015) Reasons for electronic cigarette experimentation and discontinuation among adolescents and young adults. Nicotine Tob Res 17:847–854

    Article  PubMed  Google Scholar 

  • Kuhn S, Schubert F, Gallinat J (2010) Reduced thickness of medial orbitofrontal cortex in smokers. Biol Psychiatry 68:1061–1065

    Article  PubMed  Google Scholar 

  • Kuryatov A, Berrettini W, Lindstrom J (2011) Acetylcholine receptor (AChR) alpha5 subunit variant associated with risk for nicotine dependence and lung cancer reduces (alpha4beta2)alpha5 AChR function. Mol Pharmacol 79:119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagostena L, Trocme-Thibierge C, Morain P, Cherubini E (2008) The partial alpha7 nicotine acetylcholine receptor agonist S 24795 enhances long-term potentiation at CA3-CA1 synapses in the adult mouse hippocampus. Neuropharmacology 54:676–685

    Article  CAS  PubMed  Google Scholar 

  • Lanca AJ, Adamson KL, Coen KM, Chow BL, Corrigall WA (2000) The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience 96:735–742

    Article  CAS  PubMed  Google Scholar 

  • Law AJ, Wang Y, Sei Y, O’Donnell P, Piantadosi P, Papaleo F, Straub RE, Huang W, Thomas CJ, Vakkalanka R, Besterman AD, Lipska BK, Hyde TM, Harrison PJ, Kleinman JE, Weinberger DR (2012) Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110delta inhibition as a potential therapeutic strategy. Proc Natl Acad Sci U S A 109:12165–12170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Foll B, Goldberg SR (2005) Control of the reinforcing effects of nicotine by associated environmental stimuli in animals and humans. Trends Pharmacol Sci 26:287–293

    Article  PubMed  CAS  Google Scholar 

  • Lenz B, Klafki HW, Hillemacher T, Killisch N, Schaller G, Frieling H, Clepce M, Gossler A, Thuerauf N, Winterer G, Kornhuber J, Bleich S (2010) Smoking behaviour is associated with expression and phosphorylation of CREB in human buffy coat. Int J Neuropsychopharmacol 13:207–215

    Article  CAS  PubMed  Google Scholar 

  • Li P, Steinbach JH (2010) The neuronal nicotinic alpha4beta2 receptor has a high maximal probability of being open. Br J Pharmacol 160:1906–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MD, Cheng R, Ma JZ, Swan GE (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98:23–31

    Article  PubMed  Google Scholar 

  • Li Y, Yuan K, Cai C, Feng D, Yin J, Bi Y, Shi S, Yu D, Jin C, von Deneen KM, Qin W, Tian J (2015) Reduced frontal cortical thickness and increased caudate volume within fronto-striatal circuits in young adult smokers. Drug Alcohol Depend 151:211–219

    Article  PubMed  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  CAS  PubMed  Google Scholar 

  • Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L, Berrettini W, Knouff CW, Yuan X, Waeber G, Vollenweider P, Preisig M, Wareham NJ, Zhao JH, Loos RJ, Barroso I, Khaw KT, Grundy S, Barter P, Mahley R, Kesaniemi A, McPherson R, Vincent JB, Strauss J, Kennedy JL, Farmer A, McGuffin P, Day R, Matthews K, Bakke P, Gulsvik A, Lucae S, Ising M, Brueckl T, Horstmann S, Wichmann HE, Rawal R, Dahmen N, Lamina C, Polasek O, Zgaga L, Huffman J, Campbell S, Kooner J, Chambers JC, Burnett MS, Devaney JM, Pichard AD, Kent KM, Satler L, Lindsay JM, Waksman R, Epstein S, Wilson JF, Wild SH, Campbell H, Vitart V, Reilly MP, Li M, Qu L, Wilensky R, Matthai W, Hakonarson HH, Rader DJ, Franke A, Wittig M, Schafer A, Uda M, Terracciano A, Xiao X, Busonero F, Scheet P, Schlessinger D, St Clair D, Rujescu D, Abecasis GR, Grabe HJ, Teumer A, Volzke H, Petersmann A, John U, Rudan I, Hayward C, Wright AF, Kolcic I, Wright BJ, Thompson JR, Balmforth AJ, Hall AS, Samani NJ, Anderson CA, Ahmad T, Mathew CG, Parkes M, Satsangi J, Caulfield M, Munroe PB, Farrall M, Dominiczak A, Worthington J, Thomson W, Eyre S, Barton A, Mooser V, Francks C, Marchini J (2010) Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42:436–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingston CJ, Freeman RJ, Costales VC, Westhoff JL, Caplan LS, Sherin KM, Niebuhr DW (2019) Electronic nicotine delivery systems or e-cigarettes: American College of Preventive Medicine’s practice statement. Am J Prev Med 56:167–178

    Article  PubMed  Google Scholar 

  • Loukola A, Broms U, Maunu H, Widen E, Heikkila K, Siivola M, Salo A, Pergadia ML, Nyman E, Sammalisto S, Perola M, Agrawal A, Heath AC, Martin NG, Madden PA, Peltonen L, Kaprio J (2008) Linkage of nicotine dependence and smoking behavior on 10q, 7q and 11p in twins with homogeneous genetic background. Pharmacogenomics J 8:209–219

    Article  CAS  PubMed  Google Scholar 

  • Loukola A, Wedenoja J, Keskitalo-Vuokko K, Broms U, Korhonen T, Ripatti S, Sarin AP, Pitkaniemi J, He L, Happola A, Heikkila K, Chou YL, Pergadia ML, Heath AC, Montgomery GW, Martin NG, Madden PA, Kaprio J (2014) Genome-wide association study on detailed profiles of smoking behavior and nicotine dependence in a twin sample. Mol Psychiatry 19:615–624

    Article  CAS  PubMed  Google Scholar 

  • Lyukmanova EN, Shenkarev ZO, Shulepko MA, Mineev KS, D’Hoedt D, Kasheverov IE, Filkin SY, Krivolapova AP, Janickova H, Dolezal V, Dolgikh DA, Arseniev AS, Bertrand D, Tsetlin VI, Kirpichnikov MP (2011) NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1. J Biol Chem 286:10618–10627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–357

    Article  CAS  PubMed  Google Scholar 

  • Markou A, Kenny PJ (2002) Neuroadaptations to chronic exposure to drugs of abuse: relevance to depressive symptomatology seen across psychiatric diagnostic categories. Neurotox Res 4:297–313

    Article  PubMed  Google Scholar 

  • Marks MJ, Burch JB, Collins AC (1983) Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther 226:817–825

    CAS  PubMed  Google Scholar 

  • Maskos U (2010) Role of endogenous acetylcholine in the control of the dopaminergic system via nicotinic receptors. J Neurochem 114:641–646

    Article  CAS  PubMed  Google Scholar 

  • McClernon FJ, Gilbert DG (2004) Human functional neuroimaging in nicotine and tobacco research: basics, background, and beyond. Nicotine Tob Res 6:941–959

    Article  CAS  PubMed  Google Scholar 

  • Miech R, Johnston L, O’Malley PM, Bachman JG, Patrick ME (2019) Adolescent vaping and nicotine use in 2017–2018 – U.S. National Estimates. N Engl J Med 380:192–193

    Article  PubMed  Google Scholar 

  • Miwa JM, Walz A (2012) Enhancement in motor learning through genetic manipulation of the Lynx1 gene. PLoS One 7:e43302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa JM, Ibanez-Tallon I, Crabtree GW, Sanchez R, Sali A, Role LW, Heintz N (1999) Lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 23:105–114

    Article  CAS  PubMed  Google Scholar 

  • Miwa JM, Freedman R, Lester HA (2011) Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Neuron 70:20–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers WD, Ng KT, Singer G (1982) Intravenous self-administration of acetaldehyde in the rat as a function of schedule, food deprivation and photoperiod. Pharmacol Biochem Behav 17:807–811

    Article  CAS  PubMed  Google Scholar 

  • Nakauchi S, Sumikawa K (2012) Endogenously released ACh and exogenous nicotine differentially facilitate long-term potentiation induction in the hippocampal CA1 region of mice. Eur J Neurosci 35:1381–1395

    Article  PubMed  Google Scholar 

  • Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449

    Article  CAS  PubMed  Google Scholar 

  • Nissen NI, Anderson KR, Wang H, Lee HS, Garrison C, Eichelberger SA, Ackerman K, Im W, Miwa JM (2018) Augmenting the antinociceptive effects of nicotinic acetylcholine receptor activity through lynx1 modulation. PLoS One 13:e0199643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okuyemi KS, Faseru B, Sanderson Cox L, Bronars CA, Ahluwalia JS (2007) Relationship between menthol cigarettes and smoking cessation among African American light smokers. Addiction 102:1979–1986

    Article  PubMed  Google Scholar 

  • Omelchenko N, Sesack SR (2005) Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area. J Comp Neurol 483:217–235

    Article  PubMed  Google Scholar 

  • Orejarena MJ, Herrera-Solis A, Pons S, Maskos U, Maldonado R, Robledo P (2012) Selective re-expression of beta2 nicotinic acetylcholine receptor subunits in the ventral tegmental area of the mouse restores intravenous nicotine self-administration. Neuropharmacology 63:235–241

    Article  CAS  PubMed  Google Scholar 

  • Pandhare A, Pappu AS, Wilms H, Blanton MP, Jansen M (2017) The antidepressant bupropion is a negative allosteric modulator of serotonin type 3A receptors. Neuropharmacology 113:89–99

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Liu L, Ngolab J, Zhao-Shea R, McIntosh JM, Gardner PD, Tapper AR (2016) Habenula cholinergic neurons regulate anxiety during nicotine withdrawal via nicotinic acetylcholine receptors. Neuropharmacology 107:294–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peana AT, Muggironi G, Diana M (2010) Acetaldehyde-reinforcing effects: a study on oral self-administration behavior. Front Psych 1:23

    Google Scholar 

  • Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ (1999) Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther 289:1545–1552

    CAS  PubMed  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  CAS  PubMed  Google Scholar 

  • Pittaras EC, Faure A, Leray X, Moraitopoulou E, Cressant A, Rabat AA, Meunier C, Fossier P, Granon S (2016) Neuronal nicotinic receptors are crucial for tuning of E/I balance in prelimbic cortex and for decision-making processes. Front Psych 7:171

    Google Scholar 

  • Pons S, Fattore L, Cossu G, Tolu S, Porcu E, McIntosh JM, Changeux JP, Maskos U, Fratta W (2008) Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 28:12318–12327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portugal GS, Wilkinson DS, Turner JR, Blendy JA, Gould TJ (2012) Developmental effects of acute, chronic, and withdrawal from chronic nicotine on fear conditioning. Neurobiol Learn Mem 97:482–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L (1996) Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380:347–351

    Article  CAS  PubMed  Google Scholar 

  • Saccone NL, Wang JC, Breslau N, Johnson EO, Hatsukami D, Saccone SF, Grucza RA, Sun L, Duan W, Budde J, Culverhouse RC, Fox L, Hinrichs AL, Steinbach JH, Wu M, Rice JP, Goate AM, Bierut LJ (2009) The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res 69:6848–6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas R, Sturm R, Boulter J, De Biasi M (2009) Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J Neurosci 29:3014–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC, Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65:1526–1535

    Article  CAS  PubMed  Google Scholar 

  • Sanjakdar SS, Maldoon PP, Marks MJ, Brunzell DH, Maskos U, McIntosh JM, Bowers MS, Damaj MI (2015) Differential roles of alpha6beta2∗ and alpha4beta2∗ neuronal nicotinic receptors in nicotine- and cocaine-conditioned reward in mice. Neuropsychopharmacology 40:350–360

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Chang CY, Lucantonio F, Takahashi YK (2016) Thinking outside the box: orbitofrontal cortex, imagination, and how we can treat addiction. Neuropsychopharmacology 41:2966–2976

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith TT, Schaff MB, Rupprecht LE, Schassburger RL, Buffalari DM, Murphy SE, Sved AF, Donny EC (2015) Effects of MAO inhibition and a combination of minor alkaloids, beta-carbolines, and acetaldehyde on nicotine self-administration in adult male rats. Drug Alcohol Depend 155:243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Pantoja R, Moss FJ, Mackey ED, Son CD, Miwa J, Lester HA (2011) Nicotine up-regulates alpha4beta2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning. J Gen Physiol 137:59–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoker AK, Olivier B, Markou A (2012) Role of alpha7- and beta4-containing nicotinic acetylcholine receptors in the affective and somatic aspects of nicotine withdrawal: studies in knockout mice. Behav Genet 42:423–436

    Article  PubMed  Google Scholar 

  • Strasser AA, Malaiyandi V, Hoffmann E, Tyndale RF, Lerman C (2007) An association of CYP2A6 genotype and smoking topography. Nicotine Tob Res 9:511–518

    Article  CAS  PubMed  Google Scholar 

  • Sullivan PF, Kendler KS (1999) The genetic epidemiology of smoking. Nicotine Tob Res 1(Suppl 2):S51–S57; discussion S69–70

    Article  PubMed  Google Scholar 

  • Tang J, Dani JA (2009) Dopamine enables in vivo synaptic plasticity associated with the addictive drug nicotine. Neuron 63:673–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C, Whiteaker P, Marks MJ, Collins AC, Lester HA (2004) Nicotine activation of alpha4∗ receptors: sufficient for reward, tolerance, and sensitization. Science 306:1029–1032

    Article  CAS  PubMed  Google Scholar 

  • Tekinay AB, Nong Y, Miwa JM, Lieberam I, Ibanez-Tallon I, Greengard P, Heintz N (2009) A role for LYNX2 in anxiety-related behavior. Proc Natl Acad Sci U S A 106:4477–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen MS, Mikkelsen JD (2012) Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of alpha7 nicotinic acetylcholine receptors. J Neurochem 123:73–83

    Article  CAS  PubMed  Google Scholar 

  • Tonstad S, Heggen E, Giljam H, Lagerback PA, Tonnesen P, Wikingsson LD, Lindblom N, de Villiers S, Svensson TH, Fagerstrom KO (2013) Niccine(R), a nicotine vaccine, for relapse prevention: a phase II, randomized, placebo-controlled, multicenter clinical trial. Nicotine Tob Res 15:1492–1501

    Article  CAS  PubMed  Google Scholar 

  • Truman P, Grounds P, Brennan KA (2017) Monoamine oxidase inhibitory activity in tobacco particulate matter: are harman and norharman the only physiologically relevant inhibitors? Neurotoxicology 59:22–26

    Article  CAS  PubMed  Google Scholar 

  • Tuesta LM, Chen Z, Duncan A, Fowler CD, Ishikawa M, Lee BR, Liu XA, Lu Q, Cameron M, Hayes MR, Kamenecka TM, Pletcher M, Kenny PJ (2017) GLP-1 acts on habenular avoidance circuits to control nicotine intake. Nat Neurosci 20:708–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JR, Castellano LM, Blendy JA (2011) Parallel anxiolytic-like effects and upregulation of neuronal nicotinic acetylcholine receptors following chronic nicotine and varenicline. Nicotine Tob Res 13:41–46

    Article  CAS  PubMed  Google Scholar 

  • Turner JR, Wilkinson DS, Poole RL, Gould TJ, Carlson GC, Blendy JA (2013) Divergent functional effects of sazetidine-a and varenicline during nicotine withdrawal. Neuropsychopharmacology 38:2035–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JR, Ray R, Lee B, Everett L, Xiang J, Jepson C, Kaestner KH, Lerman C, Blendy JA (2014) Evidence from mouse and man for a role of neuregulin 3 in nicotine dependence. Mol Psychiatry 19:801–810

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Sanroman DB, Monje RD, Bardo MT (2016) Nicotine self-administration remodels perineuronal nets in ventral tegmental area and orbitofrontal cortex in adult male rats. Addict Biol 22(6):1743–1755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villanti AC, Johnson AL, Ambrose BK, Cummings KM, Stanton CA, Rose SW, Feirman SP, Tworek C, Glasser AM, Pearson JL, Cohn AM, Conway KP, Niaura RS, Bansal-Travers M, Hyland A (2017) Flavored tobacco product use in youth and adults: findings from the first wave of the PATH study (2013–2014). Am J Prev Med 53(2):139–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Vullhorst D, Ahmad T, Karavanova I, Keating C, Buonanno A (2017) Structural similarities between Neuregulin 1-3 isoforms determine their subcellular distribution and signaling mode in central neurons. J Neurosci 37:5232–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335

    Article  CAS  PubMed  Google Scholar 

  • Walters CL, Cleck JN, Kuo YC, Blendy JA (2005) Mu-opioid receptor and CREB activation are required for nicotine reward. Neuron 46:933–943

    Article  CAS  PubMed  Google Scholar 

  • Walters CL, Brown S, Changeux JP, Martin B, Damaj MI (2006) The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology 184:339–344

    Article  CAS  PubMed  Google Scholar 

  • Welsby PJ, Rowan MJ, Anwyl R (2009) Intracellular mechanisms underlying the nicotinic enhancement of LTP in the rat dentate gyrus. Eur J Neurosci 29:65–75

    Article  PubMed  Google Scholar 

  • Wilking JA, Stitzel JA (2015) Natural genetic variability of the neuronal nicotinic acetylcholine receptor subunit genes in mice: consequences and confounds. Neuropharmacology 96:205–212

    Article  CAS  PubMed  Google Scholar 

  • Williams JM, Gandhi KK, Steinberg ML, Foulds J, Ziedonis DM, Benowitz NL (2007) Higher nicotine and carbon monoxide levels in menthol cigarette smokers with and without schizophrenia. Nicotine Tob Res 9:873–881

    Article  CAS  PubMed  Google Scholar 

  • Williams DK, Stokes C, Horenstein NA, Papke RL (2011) The effective opening of nicotinic acetylcholine receptors with single agonist binding sites. J Gen Physiol 137:369–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xian H, Scherrer JF, Madden PAF, Lyons MJ, Tsuang M, True WR, Eisen SA (2003) The heritability of failed smoking cessation and nicotine withdrawal in twins who smoked and attempted to quit. Nicotine Tob Res 5:245–254

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Malagon AM, Yasuda D, Belluzzi JD, Leslie FM, Zaveri NT (2017) The alpha3beta4 nAChR partial agonist AT-1001 attenuates stress-induced reinstatement of nicotine seeking in a rat model of relapse and induces minimal withdrawal in dependent rats. Behav Brain Res 333:251–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Harrison E, Biswas L, Tran T, Liu X (2018) Menthol facilitates dopamine-releasing effect of nicotine in rat nucleus accumbens. Pharmacol Biochem Behav 175:47–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou L, Fisher ML, Cole RD, Gould TJ, Parikh V, Ortinski PI, Turner JR (2018) Neuregulin 3 signaling mediates nicotine-dependent synaptic plasticity in the orbitofrontal cortex and cognition. Neuropsychopharmacology 43:1343–1354

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Imad Damaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fowler, C.D., Turner, J.R., Imad Damaj, M. (2019). Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence. In: Nader, M., Hurd, Y. (eds) Substance Use Disorders. Handbook of Experimental Pharmacology, vol 258. Springer, Cham. https://doi.org/10.1007/164_2019_252

Download citation

Publish with us

Policies and ethics