Skip to main content

Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 251))

Abstract

The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson SE, Schwab C, Stauffer E, Banic A, Steinbach LS (2001) Hibernoma: imaging characteristics of a rare benign soft tissue tumor. Skelet Radiol 30:590–595

    Article  CAS  Google Scholar 

  • Bao J, Cui X, Cai S, Zhong J, Cai C, Chen Z (2013) Brown adipose tissue mapping in rats with combined intermolecular double-quantum coherence and Dixon water–fat MRI. NMR Biomed 26:1663–1671

    Article  PubMed  Google Scholar 

  • Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205

    Article  CAS  PubMed  Google Scholar 

  • Bauwens M, Wierts R, van Royen B, Bucerius J, Backes W, Mottaghy F, Brans B (2014) Molecular imaging of brown adipose tissue in health and disease. Eur J Nucl Med Mol Imaging 41:776–791

    Article  CAS  PubMed  Google Scholar 

  • Bhanu Prakash KN, Srour H, Velan SS, Chuang KH (2016a) A method for the automatic segmentation of brown adipose tissue. MAGMA 29:287–299

    Article  CAS  PubMed  Google Scholar 

  • Bhanu Prakash KN, Verma SK, Yaligar J, Goggi J, Gopalan V, Lee SS, Tian X, Sugii S, Leow MK, Bhakoo K, Velan SS (2016b) Segmentation and characterization of interscapular brown adipose tissue in rats by multi-parametric magnetic resonance imaging. MAGMA 29:277–286

    Article  CAS  PubMed  Google Scholar 

  • Borga M, Virtanen KA, Romu T, Leinhard OD, Persson A, Nuutila P, Enerback S (2014) Brown adipose tissue in humans: detection and functional analysis using PET (positron emission tomography), MRI (magnetic resonance imaging), and DECT (dual energy computed tomography). Methods Enzymol 537:141–159

    Article  CAS  PubMed  Google Scholar 

  • Branca RT, Warren WS (2011) In vivo brown adipose tissue detection and characterization using water-lipid intermolecular zero-quantum coherences. Magn Reson Med 65:313–319

    Article  CAS  PubMed  Google Scholar 

  • Branca RT, Zhang L, Warren WS, Auerbach E, Khanna A, Degan S, Ugurbil K, Maronpot R (2013) In vivo noninvasive detection of Brown adipose tissue through intermolecular zero-quantum MRI. PLoS One 8:e74206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branca RT, He T, Zhang L, Floyd CS, Freeman M, White C, Burant A (2014) Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI. Proc Natl Acad Sci USA 111:18001–18006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterton BE, Mensforth D, Coventry BJ, Cohen P (2002) Hibernoma: intense uptake seen on Tc-99m tetrofosmin and FDG positron emission tomographic scanning. Clin Nucl Med 27:369–370

    Article  PubMed  Google Scholar 

  • Chen YI, Cypess AM, Sass CA, Brownell AL, Jokivarsi KT, Kahn CR, Kwong KK (2012) Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging. Obesity (Silver Spring) 20:1519–1526

    Article  CAS  Google Scholar 

  • Chen YC, Cypess AM, Chen YC, Palmer M, Kolodny G, Kahn CR, Kwong KK (2013) Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J Nucl Med 54:1584–1587

    Article  CAS  PubMed  Google Scholar 

  • Chen KY, Cypess AM, Laughlin MR, Haft CR, Hu HH, Bredella MA, Enerback S, Kinahan PE, Lichtenbelt W, Lin FI, Sunderland JJ, Virtanen KA, Wahl RL (2016) Brown adipose reporting criteria in imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab 24:210–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chondronikola M, Beeman SC, Wahl RL (2018) Non-invasive methods for the assessment of brown adipose tissue in humans. J Physiol 596:363–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohade C, Mourtzikos KA, Wahl RL (2003) “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med 44:1267–1270

    PubMed  Google Scholar 

  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cypess AM, Haft CR, Laughlin MR, Hu HH (2014) Brown fat in humans: consensus points and experimental guidelines. Cell Metab 20:408–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai W, Weines L, Alsop D, Cypess A (2015) Feasibility and repeatability of brown adipose tissue volume and perfusion activity using MRI. In: Proceedings of 23rd international society for magnetic resonance in medicine, Toronto, p 539

    Google Scholar 

  • Davis RM, Zhou Z, Chung H, Warren WS (2016) Multi-spin echo spatial encoding provides three-fold improvement of temperature precision during intermolecular zero quantum thermometry. Magn Reson Med 75:1958–1966

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Schoeneman SE, Zhang H, Kwon S, Rigsby CK, Shore RM, Josefson JL (2015) MRI characterization of brown adipose tissue in obese and normal-weight children. Pediatr Radiol 45:1682–1689

    Article  PubMed  Google Scholar 

  • Deng J, Neff LM, Rubert NC, Zhang B, Shore RM, Samet JD, Nelson PC, Landsberg L (2018) MRI characterization of brown adipose tissue under thermal challenges in normal weight, overweight, and obese young men. J Magn Reson Imaging 47:936–947

    Article  PubMed  Google Scholar 

  • Dieckmeyer M, Ruschke S, Eggers H, Kooijman H, Rummeny EJ, Kirschke JS, Baum T, Karampinos DC (2017) ADC quantification of the vertebral bone marrow water component: removing the confounding effect of residual fat. Magn Reson Med 78:1432–1441

    Article  CAS  PubMed  Google Scholar 

  • Diefenbach MN, Ruschke S, Eggers H, Meineke J, Rummeny EJ, Karampinos DC (2018) Improving chemical shift encoding-based water–fat separation based on a detailed consideration of magnetic field contributions. Magn Reson Med 80:990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinish US, Wong CL, Sriram S, Ong WK, Balasundaram G, Sugii S, Olivo M (2017) Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning. Sci Rep 7:41357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dundamadappa SK, Shankar S, Danrad R, Singh A, Vijayaraghavan G, Kim Y, Perugini R (2007) Imaging of brown fat associated with adrenal pheochromocytoma. Acta Radiol 48:468–472

    Article  CAS  PubMed  Google Scholar 

  • Franconi F, Lemaire L, Saint-Jalmes H, Saulnier P (2018) Tissue oxygenation mapping by combined chemical shift and T1 magnetic resonance imaging. Magn Reson Med 79:1981–1991

    Article  PubMed  Google Scholar 

  • Franssens BT, Eikendal AL, Leiner T, van der Graaf Y, Visseren FL, Hoogduin JM (2016) Reliability and agreement of adipose tissue fat fraction measurements with water–fat MRI in patients with manifest cardiovascular disease. NMR Biomed 29:48–56

    Article  CAS  PubMed  Google Scholar 

  • Franssens BT, Hoogduin H, Leiner T, van der Graaf Y, Visseren FLJ (2017) Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease. J Magn Reson Imaging 46:497–504

    Article  PubMed  Google Scholar 

  • Franz D, Karampinos DC, Rummeny EJ, Souvatzoglou M, Beer AJ, Nekolla SG, Schwaiger M, Eiber M (2015) Discrimination between brown and white adipose tissue using a 2-point dixon water–fat separation method in simultaneous PET/MRI. J Nucl Med 56:1742–1747

    Article  CAS  PubMed  Google Scholar 

  • Franz D, Weidlich D, Freitag F, Holzapfel C, Drabsch T, Baum T, Eggers H, Witte A, Rummeny EJ, Hauner H, Karampinos DC (2018) Association of proton density fat fraction in adipose tissue with imaging-based and anthropometric obesity markers in adults. Int J Obes 42:175–182

    Article  CAS  Google Scholar 

  • Galiana G, Branca RT, Jenista ER, Warren WS (2008) Accurate temperature imaging based on intermolecular coherences in magnetic resonance. Science 322:421–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan G, Warren RV, Leproux A, Compton M, Cutler K, Wittkopp S, Tran G, O’Sullivan T, Malik S, Galassetti PR, Tromberg BJ (2016) Diffuse optical spectroscopic imaging of subcutaneous adipose tissue metabolic changes during weight loss. Int J Obes 40:1292–1300

    Article  CAS  Google Scholar 

  • Gatidis S, Schmidt H, Pfannenberg CA, Nikolaou K, Schick F, Schwenzer NF (2016) Is it possible to detect activated brown adipose tissue in humans using single-time-point infrared thermography under thermoneutral conditions? Impact of BMI and subcutaneous adipose tissue thickness. PLoS One 11:e0151152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gifford A, Towse T, Avison M, Welch E (2014) Temperature mapping in human brown adipose tissue using fat–water MRI with explicit fitting of water peak location. In: Proceedings of 22nd international society for magnetic resonance in medicine, Milan, p 2354

    Google Scholar 

  • Gifford A, Towse TF, Walker RC, Avison MJ, Welch EB (2015) Human brown adipose tissue depots automatically segmented by positron emission tomography/computed tomography and registered magnetic resonance images. J Vis Exp 96:e52415–e52415

    Google Scholar 

  • Gifford A, Towse TF, Walker RC, Avison MJ, Welch EB (2016) Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging. Am J Physiol Endocrinol Metab 311:E95–E104

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimpo K, Volker MN, Heppe EN, Braun S, Heverhagen JT, Heldmaier G (2014) Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance. J Lipid Res 55:398–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton G, Smith DL Jr, Bydder M, Nayak KS, Hu HH (2011) MR properties of brown and white adipose tissues. J Magn Reson Imaging 34:468–473

    Article  PubMed  PubMed Central  Google Scholar 

  • Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29:1393–1398

    Article  PubMed  Google Scholar 

  • Hartwig V, Guiducci L, Marinelli M, Pistoia L, Tegrimi TM, Iervasi G, Quinones-Galvan A, L’Abbate A (2017) Multimodal imaging for the detection of brown adipose tissue activation in women: a pilot study using NIRS and infrared thermography. J Healthc Eng 2017:5986452

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernando D, Kellman P, Haldar JP, Liang ZP (2010) Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 63:79–90

    PubMed  PubMed Central  Google Scholar 

  • Hernando D, Sharma SD, Kramer H, Reeder SB (2014) On the confounding effect of temperature on chemical shift-encoded fat quantification. Magn Reson Med 72:464–470

    Article  PubMed  Google Scholar 

  • Holstila M, Virtanen KA, Gronroos TJ, Laine J, Lepomaki V, Saunavaara J, Lisinen I, Komu M, Hannukainen JC, Nuutila P, Parkkola R, Borra RJ (2013) Measurement of brown adipose tissue mass using a novel dual-echo magnetic resonance imaging approach: a validation study. Metabolism 62:1189–1198

    Article  CAS  PubMed  Google Scholar 

  • Holstila M, Pesola M, Saari T, Koskensalo K, Raiko J, Borra RJ, Nuutila P, Parkkola R, Virtanen KA (2017) MR signal-fat-fraction analysis and T2* weighted imaging measure BAT reliably on humans without cold exposure. Metabolism 70:23–30

    Article  CAS  PubMed  Google Scholar 

  • Hu HH (2015) Magnetic resonance of brown adipose tissue: a review of current techniques. Crit Rev Biomed Eng 43:161–181

    Article  PubMed  Google Scholar 

  • Hu HH, Kan HE (2013) Quantitative proton MR techniques for measuring fat. NMR Biomed 26:1609–1629

    Article  CAS  PubMed  Google Scholar 

  • Hu HH, Hines CD, Smith DL Jr, Reeder SB (2012a) Variations in T2* and fat content of murine brown and white adipose tissues by chemical-shift MRI. Magn Reson Imaging 30:323–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu HH, Tovar JP, Pavlova Z, Smith ML, Gilsanz V (2012b) Unequivocal identification of brown adipose tissue in a human infant. J Magn Reson Imaging 35:938–942

    Article  PubMed  Google Scholar 

  • Hu HH, Yin L, Aggabao PC, Perkins TG, Chia JM, Gilsanz V (2013) Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water–fat MRI. J Magn Reson Imaging 38:885–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu HH, Wu TW, Yin L, Kim MS, Chia JM, Perkins TG, Gilsanz V (2014) MRI detection of brown adipose tissue with low fat content in newborns with hypothermia. Magn Reson Imaging 32:107–117

    Article  PubMed  Google Scholar 

  • Hu HH, Chen J, Shen W (2016) Segmentation and quantification of adipose tissue by magnetic resonance imaging. MAGMA 29:259–276

    Article  CAS  PubMed  Google Scholar 

  • Hui SCN, Ko JKL, Zhang T, Shi L, Yeung DKW, Wang D, Chan Q, Chu WCW (2017) Quantification of brown and white adipose tissue based on Gaussian mixture model using water–fat and T2* MRI in adolescents. J Magn Reson Imaging 46:758–768

    Article  PubMed  Google Scholar 

  • Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Tanuma Y, Yamada M, Yamamoto M (1991) Morphological studies on brown adipose tissue in the bat and in humans of various ages. Arch Histol Cytol 54:1–39

    Article  CAS  PubMed  Google Scholar 

  • Izzi-Engbeaya C, Salem V, Atkar RS, Dhillo WS (2015) Insights into brown adipose tissue physiology as revealed by imaging studies. Adipocytes 4:1–12

    Article  CAS  Google Scholar 

  • Jung CS, Heine M, Freund B, Reimer R, Koziolek EJ, Kaul MG, Kording F, Schumacher U, Weller H, Nielsen P, Adam G, Heeren J, Ittrich H (2016) Quantitative activity measurements of brown adipose tissue at 7 T magnetic resonance imaging after application of triglyceride-rich lipoprotein 59Fe-superparamagnetic Iron oxide nanoparticle: intravenous versus intraperitoneal approach. Investig Radiol 51:194–202

    Article  CAS  Google Scholar 

  • Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, Krug R, Baum T (2018) Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging 47:332–353

    Article  PubMed  Google Scholar 

  • Khanna A, Branca RT (2012) Detecting brown adipose tissue activity with BOLD MRI in mice. Magn Reson Med 68:1285–1290

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Hu HH, Aggabao PC, Geffner ME, Gilsanz V (2014) Presence of brown adipose tissue in an adolescent with severe primary hypothyroidism. J Clin Endocrinol Metab 99:E1686–E1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koksharova E, Ustyuzhanin D, Philippov Y, Mayorov A, Shestakova M, Shariya M, Ternovoy S, Dedov I (2017) The relationship between brown adipose tissue content in supraclavicular fat depots and insulin sensitivity in patients with type 2 diabetes mellitus and prediabetes. Diabetes Technol Ther 19:96–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskensalo K, Raiko J, Saari T, Saunavaara V, Eskola O, Nuutila P, Saunavaara J, Parkkola R, Virtanen KA (2017) Human brown adipose tissue temperature and fat fraction are related to its metabolic activity. J Clin Endocrinol Metab 102:1200–1207

    Article  PubMed  Google Scholar 

  • Lau AZ, Chen AP, Gu Y, Ladouceur-Wodzak M, Nayak KS, Cunningham CH (2014) Noninvasive identification and assessment of functional brown adipose tissue in rodents using hyperpolarized 13C imaging. Int J Obes 38:126–131

    Article  CAS  Google Scholar 

  • Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, Tal I, Dieckmann W, Gupta G, Kolodny GM, Pacak K, Herscovitch P, Cypess AM, Chen KY (2017) Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci USA 114:8649–8654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerback S (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634

    Article  CAS  PubMed  Google Scholar 

  • Lindenberg KS, Weydt P, Muller HP, Bornstedt A, Ludolph AC, Landwehrmeyer GB, Rottbauer W, Kassubek J, Rasche V (2014) Two-point magnitude MRI for rapid mapping of brown adipose tissue and its application to the R6/2 mouse model of Huntington disease. PLoS One 9:e105556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lunati E, Marzola P, Nicolato E, Fedrigo M, Villa M, Sbarbati A (1999) In vivo quantitative lipidic map of brown adipose tissue by chemical shift imaging at 4.7 Tesla. J Lipid Res 40:1395–1400

    Article  CAS  PubMed  Google Scholar 

  • Lunati E, Farace P, Nicolato E, Righetti C, Marzola P, Sbarbati A, Osculati F (2001a) Polyunsaturated fatty acids mapping by (1)H MR-chemical shift imaging. Magn Reson Med 46:879–883

    Article  CAS  PubMed  Google Scholar 

  • Lunati E, Marzola P, Nicolato E, Sbarbati A (2001b) In-vivo quantitative hydrolipidic map of perirenal adipose tissue by chemical shift imaging at 4.7 Tesla. Int J Obes Relat Metab Disord 25:457–461

    Article  CAS  PubMed  Google Scholar 

  • Lundstrom E, Strand R, Johansson L, Bergsten P, Ahlstrom H, Kullberg J (2015) Magnetic resonance imaging cooling-reheating protocol indicates decreased fat fraction via lipid consumption in suspected brown adipose tissue. PLoS One 10:e0126705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundstrom E, Strand R, Forslund A, Bergsten P, Weghuber D, Ahlstrom H, Kullberg J (2017) Automated segmentation of human cervical-supraclavicular adipose tissue in magnetic resonance images. Sci Rep 7:3064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacCannell A, Sinclair K, Friesen-Waldner L, McKenzie CA, Staples JF (2017) Water–fat MRI in a hibernator reveals seasonal growth of white and brown adipose tissue without cold exposure. J Comp Physiol B 187:759–767

    Article  CAS  PubMed  Google Scholar 

  • Marzola P, Boschi F, Moneta F, Sbarbati A, Zancanaro C (2016) Preclinical in vivo imaging for fat tissue identification, quantification, and functional characterization. Front Pharmacol 7:336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCallister A, Zhang L, Burant A, Katz L, Branca RT (2017) A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI. Magn Reson Med 78:1922–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452

    Article  CAS  PubMed  Google Scholar 

  • Osculati F, Leclercq F, Sbarbati A, Zancanaro C, Cinti S, Antonakis K (1989) Morphological identification of brown adipose tissue by magnetic resonance imaging in the rat. Eur J Radiol 9:112–114

    CAS  PubMed  Google Scholar 

  • Osculati F, Sbarbati A, Leclercq F, Zancanaro C, Accordini C, Antonakis K, Boicelli A, Cinti S (1991) The correlation between magnetic resonance imaging and ultrastructural patterns of brown adipose tissue. J Submicrosc Cytol Pathol 23:167–174

    CAS  PubMed  Google Scholar 

  • Panagia M, Chen YC, Chen HH, Ernande L, Chen C, Chao W, Kwong K, Scherrer-Crosbie M, Sosnovik DE (2016) Functional and anatomical characterization of brown adipose tissue in heart failure with blood oxygen level dependent magnetic resonance. NMR Biomed 29:978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng XG, Ju S, Fang F, Wang Y, Fang K, Cui X, Liu G, Li P, Mao H, Teng GJ (2013) Comparison of brown and white adipose tissue fat fractions in ob, seipin, and Fsp27 gene knockout mice by chemical shift-selective imaging and (1)H-MR spectroscopy. Am J Physiol Endocrinol Metab 304:E160–E167

    Article  CAS  PubMed  Google Scholar 

  • Raiko J, Holstila M, Virtanen KA, Orava J, Saunavaara V, Niemi T, Laine J, Taittonen M, Borra RJ, Nuutila P, Parkkola R (2015) Brown adipose tissue triglyceride content is associated with decreased insulin sensitivity, independently of age and obesity. Diabetes Obes Metab 17:516–519

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen JM, Entringer S, Nguyen A, van Erp TG, Burns J, Guijarro A, Oveisi F, Swanson JM, Piomelli D, Wadhwa PD, Buss C, Potkin SG (2013) Brown adipose tissue quantification in human neonates using water–fat separated MRI. PLoS One 8:e77907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reber J, Willershauser M, Karlas A, Paul-Yuan K, Diot G, Franz D, Fromme T, Ovsepian SV, Beziere N, Dubikovskaya E, Karampinos DC, Holzapfel C, Hauner H, Klingenspor M, Ntziachristos V (2018) Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients. Cell Metab 27:689–701.e4

    Article  CAS  PubMed  Google Scholar 

  • Reddy NL, Jones TA, Wayte SC, Adesanya O, Sankar S, Yeo YC, Tripathi G, McTernan PG, Randeva HS, Kumar S, Hutchinson CE, Barber TM (2014) Identification of brown adipose tissue using MR imaging in a human adult with histological and immunohistochemical confirmation. J Clin Endocrinol Metab 99:E117–E121

    Article  PubMed  Google Scholar 

  • Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749

    Article  PubMed  PubMed Central  Google Scholar 

  • Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36:1011–1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieke V, Butts Pauly K (2008) MR thermometry. J Magn Reson Imaging 27:376–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Romu T, Elander L, Leinhard OD, Lidell ME, Betz MJ, Persson A, Enerback S, Borga M (2015) Characterization of brown adipose tissue by water–fat separated magnetic resonance imaging. J Magn Reson Imaging 42:1639–1645

    Article  PubMed  Google Scholar 

  • Romu T, Vavruch C, Dahlqvist-Leinhard O, Tallberg J, Dahlstrom N, Persson A, Heglind M, Lidell ME, Enerback S, Borga M, Nystrom FH (2016) A randomized trial of cold-exposure on energy expenditure and supraclavicular brown adipose tissue volume in humans. Metabolism 65:926–934

    Article  CAS  PubMed  Google Scholar 

  • Rossato M, Cecchin D, Vettor R (2016) Brown adipose tissue localization using (18)F-FDG PET/MRI in adult. Endocrine 54:562–563

    Article  CAS  PubMed  Google Scholar 

  • Sampath SC, Sampath SC, Bredella MA, Cypess AM, Torriani M (2016) Imaging of brown adipose tissue: state of the art. Radiology 280:4–19

    Article  PubMed  Google Scholar 

  • Sbarbati A, Guerrini U, Marzola P, Asperio R, Osculati F (1997) Chemical shift imaging at 4.7 tesla of brown adipose tissue. J Lipid Res 38:343–347

    Article  CAS  PubMed  Google Scholar 

  • Sbarbati A, Cavallini I, Marzola P, Nicolato E, Osculati F (2006) Contrast-enhanced MRI of brown adipose tissue after pharmacological stimulation. Magn Reson Med 55:715–718

    Article  PubMed  Google Scholar 

  • Scotti A, Tain RW, Li W, Gil V, Liew CW, Cai K (2017) Mapping brown adipose tissue based on fat water fraction provided by Z-spectral imaging. J Magn Reson Imaging 47:1527–33

    Google Scholar 

  • Simchick G, Yin A, Yin H, Zhao Q (2017) Dynamic monitoring of brown adipose tissue activation and white adipose tissue beiging. In: Proceedings of 25th international society for magnetic resonance in medicine, Honolulu, p 5045

    Google Scholar 

  • Smith DL Jr, Yang Y, Hu HH, Zhai G, Nagy TR (2013) Measurement of interscapular brown adipose tissue of mice in differentially housed temperatures by chemical-shift-encoded water–fat MRI. J Magn Reson Imaging 38:1425–1433

    Article  PubMed  Google Scholar 

  • Stahl V, Maier F, Freitag MT, Floca RO, Berger MC, Umathum R, Berriel Diaz M, Herzig S, Weber MA, Dimitrakopoulou-Strauss A, Rink K, Bachert P, Ladd ME, Nagel AM (2017) In vivo assessment of cold stimulation effects on the fat fraction of brown adipose tissue using DIXON MRI. J Magn Reson Imaging 45:369–380

    Article  PubMed  Google Scholar 

  • Strobel K, van den Hoff J, Pietzsch J (2008) Localized proton magnetic resonance spectroscopy of lipids in adipose tissue at high spatial resolution in mice in vivo. J Lipid Res 49:473–480

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Yan J, Sun L, Velan SS, Leow MKS (2017) A synopsis of brown adipose tissue imaging modalities for clinical research. Diabetes Metab 43:401–410

    Article  CAS  PubMed  Google Scholar 

  • van der Lans AA, Wierts R, Vosselman MJ, Schrauwen P, Brans B, van Marken Lichtenbelt WD (2014) Cold-activated brown adipose tissue in human adults: methodological issues. Am J Physiol Regul Integr Comp Physiol 307:R103–R113

    Article  PubMed  CAS  Google Scholar 

  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  PubMed  Google Scholar 

  • van Rooijen BD, van der Lans AA, Brans B, Wildberger JE, Mottaghy FM, Schrauwen P, Backes WH, van Marken Lichtenbelt WD (2013) Imaging cold-activated brown adipose tissue using dynamic T2*-weighted magnetic resonance imaging and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography. Investig Radiol 48:708–714

    Article  CAS  Google Scholar 

  • Verma SK, Nagashima K, Yaligar J, Michael N, Lee SS, Xianfeng T, Gopalan V, Sadananthan SA, Anantharaj R, Velan SS (2017) Differentiating brown and white adipose tissues by high-resolution diffusion NMR spectroscopy. J Lipid Res 58:289–298

    Article  CAS  PubMed  Google Scholar 

  • Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  CAS  PubMed  Google Scholar 

  • Warren WS, Richter W, Andreotti AH, Farmer BT 2nd (1993) Generation of impossible cross-peaks between bulk water and biomolecules in solution NMR. Science 262:2005–2009

    Article  CAS  PubMed  Google Scholar 

  • Weidlich D, Hock A, Ruschke S, Franz D, Hauner H, Rummeny EJ, Karampinos DC (2017) Improving the quality of DW spectra in the supraclavicular fossa with a navigator-gated and cardiac-triggered flow-compensated diffusion-weighted STEAM MRS acquisition. In: Proceedings of 25th international society for magnetic resonance in medicine, Honolulu, p 5490

    Google Scholar 

  • Welch E, Gifford A, Towse T (2014) Phantom validation of temperature mapping using fat–water MRI with explicit fitting of water peak location. In: Proceedings of 22nd international society for magnetic resonance in medicine, Milan, p 3673

    Google Scholar 

  • Winter L, Oberacker E, Paul K, Ji Y, Oezerdem C, Ghadjar P, Thieme A, Budach V, Wust P, Niendorf T (2016) Magnetic resonance thermometry: methodology, pitfalls and practical solutions. Int J Hyperth 32:63–75

    Article  CAS  Google Scholar 

  • Yaligar J, Verma SK, Gopalan V, Rengaraj A, Xianfeng T, Velan SS (2017) Evaluation of the vascular perfusion in activated brown adipose tissue by dynamic contrast enhanced MR imaging. In: Proceedings of 25th international society for magnetic resonance in medicine, Honolulu, p 1067

    Google Scholar 

  • Zancanaro C, Nano R, Marchioro C, Sbarbati A, Boicelli A, Osculati F (1994) Magnetic resonance spectroscopy investigations of brown adipose tissue and isolated brown adipocytes. J Lipid Res 35:2191–2199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The present work was supported by the European Research Council (grant agreement No 677661, ProFatMRI), the German Research Foundation (DFG-SFB824/A9), and Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios C. Karampinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karampinos, D.C., Weidlich, D., Wu, M., Hu, H.H., Franz, D. (2018). Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function. In: Pfeifer, A., Klingenspor, M., Herzig, S. (eds) Brown Adipose Tissue. Handbook of Experimental Pharmacology, vol 251. Springer, Cham. https://doi.org/10.1007/164_2018_158

Download citation

Publish with us

Policies and ethics