Skip to main content

Perspectives and Challenges of Using Chitosan in Various Biological Applications

  • Chapter
  • First Online:
Chitosan for Biomaterials III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 287))

Abstract

Chitosan is a cationic biopolymer that is derived from chitin by the alkaline deacetylation technique. It has randomly distributed d-glucosamine and N-Acetyl-d-glucosamine units in its backbone. Due to the presence of primary hydroxyl and amino groups, chitosan can be modified into various derivatives with desired functionalities. Chitosan and its derivatives are considered as potential biomaterials to be utilized in various biological applications because of their easy availability, nontoxicity, biocompatibility, biodegradability, and gelling properties. This chapter provides a detailed review on the current status and challenges of using chitosan-based materials as biosensors, food coatings, drug delivery carriers, antimicrobial agents, wound dressings, hemostatic agents, and tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A (2018) Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol 120:1181–1189

    Article  PubMed  CAS  Google Scholar 

  2. Abhinaya M, Parthiban R, Kumar PS, Vo DN (2021) A review on cleaner strategies for extraction of chitosan and its application in toxic pollutant removal. Environ Res 196:110996

    Article  CAS  PubMed  Google Scholar 

  3. Tharanathan RN, Kittur FS (2003) Chitin-the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87

    Article  CAS  PubMed  Google Scholar 

  4. Wang WQ, Meng QY, Li Q, Liu JB, Zhou M, Jin Z, Zhao K (2020) Chitosan derivatives and their application in biomedicine. Int J Mol Sci 21:487

    Article  PubMed Central  CAS  Google Scholar 

  5. Deepthi S, Venkatesan J, Kim SK, Bumgardner JD, Jayakumar R (2016) An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1338–1353

    Article  CAS  PubMed  Google Scholar 

  6. Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  7. Baranwal A, Kumar A, Priyadharshini A, Oggu GS, Bhatnagar I, Srivastava A, Chandra P (2018) Chitosan: an undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 110:110–123

    Article  CAS  PubMed  Google Scholar 

  8. Koev ST, Dykstra PH, Luo X, Rubloff GW, Bentley WE, Payne GF, Ghodssi R (2010) Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab Chip 10:3026–3042

    Article  CAS  PubMed  Google Scholar 

  9. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  CAS  Google Scholar 

  10. Sanandiya ND, Lee S, Rho S, Lee H, Kim IS, Hwang DS (2019) Tunichrome-inspired pyrogallol functionalized chitosan for tissue adhesion and hemostasis. Carbohydr Polym 208:77–85

    Article  CAS  PubMed  Google Scholar 

  11. Moeini A, Pedram P, Makvandi P, Malinconico M, Gomez d'Ayala G (2020) Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr Polym 233:115839

    Article  CAS  PubMed  Google Scholar 

  12. Miguel SP, Moreira AF, Correia IJ (2019) Chitosan based-asymmetric membranes for wound healing: a review. Int J Biol Macromol 127:460–475

    Article  CAS  PubMed  Google Scholar 

  13. Sahariah P, Masson M (2017) Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromolecules 18:3846–3868

    Article  CAS  PubMed  Google Scholar 

  14. Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A (2013) Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 42:8733–8768

    Article  CAS  PubMed  Google Scholar 

  15. Bhavaniramya S, Vanajothi R, Vishnupriya S, Premkumar K, Al-Aboody MS, Vijayakumar R, Baskaran D (2019) Enzyme immobilization on nanomaterials for biosensor and biocatalyst in food and biomedical industry. Curr Pharm Design 25:2661–2676

    Article  CAS  Google Scholar 

  16. Nakamura H (2018) Current status of water environment and their microbial biosensor techniques – part II: recent trends in microbial biosensor development. Anal Bioanal Chem 410:3967–3989

    Article  CAS  PubMed  Google Scholar 

  17. Lowe CR (1985) An introduction to the concepts and technology of biosensors. Biosensors 1:3–16

    Article  CAS  PubMed  Google Scholar 

  18. Jiang Y, Wu J (2019) Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis 40:2084–2097

    Article  CAS  PubMed  Google Scholar 

  19. Alvarado N, Abarca RL, Linares-Flores C (2021) Two fascinating polysaccharides: chitosan and starch. Some prominent characterizations for applying as eco-friendly food packaging and pollutant remover in aqueous medium. Progress in recent years: a review. Polymers 13:1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohandas A, Sun W, Nimal TR, Shankarappa SA, Hwang NS, Jayakumar R (2018) Injectable chitosan-fibrin/nanocurcumin composite hydrogel for the enhancement of angiogenesis. Res Chem Intermediat 44:4873–4887

    Article  CAS  Google Scholar 

  21. Zhang D, Sun Y, Wu Q, Ma PY, Zhang H, Wang YP, Song DQ (2016) Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG. Talanta 146:364–368

    Article  CAS  PubMed  Google Scholar 

  22. Pedano ML, Martel L, Desbrieres J, Defrancq E, Dumy P, Coche-Guerente L, Labbe P, Legrand JF, Calemczuk R, Rivas GA (2004) Layer-by-layer deposition of chitosan derivatives and DNA on gold surfaces for the development of biorecognition layers. Anal Lett 37:2235–2250

    Article  CAS  Google Scholar 

  23. Wu LQ, Gadre AP, Yi HM, Kastantin MJ, Rubloff GW, Bentley WE, Payne GF, Ghodssi R (2002) Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface. Langmuir 18:8620–8625

    Article  CAS  Google Scholar 

  24. Buckhout-White SL, Rubloff GW (2009) Spatial resolution in chitosan-based programmable biomolecular scaffolds. Soft Matter 5:5044–5044

    Article  CAS  Google Scholar 

  25. Ates M (2013) A review study of (bio) sensor systems based on conducting polymers. Mat Sci Eng C-Mater 33:1853–1859

    Article  CAS  Google Scholar 

  26. Hassanein A, Salahuddin N, Matsuda A, Kawamura G, Elfiky M (2017) Fabrication of biosensor based on chitosan-ZnO/polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application. Mat Sci Eng C-Mater 80:494–501

    Article  CAS  Google Scholar 

  27. George SM, Tandon S, Kandasubramanian B (2020) Advancements in hydrogel-functionalized immunosensing platforms. ACS Omega 5:2060–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heydarzadeh S, Roshanfekr H, Peyman H, Kashanian S (2020) Modeling of ultrasensitive DNA hybridization detection based on gold nanoparticles/carbon-nanotubes/chitosan-modified electrodes. Colloid Surf A 587:124219

    Article  CAS  Google Scholar 

  29. Qian P, Ai SY, Yin HS, Li JH (2010) Evaluation of DNA damage and antioxidant capacity of sericin by a DNA electrochemical biosensor based on dendrimer-encapsulated Au-Pd/chitosan composite. Microchim Acta 168:347–354

    Article  CAS  Google Scholar 

  30. Qian XC, Qu Q, Li L, Ran X, Zuo LM, Huang R, Wang Q (2018) Ultrasensitive electrochemical detection of clostridium perfringens DNA based morphology-dependent DNA adsorption properties of CeO2 nanorods in dairy products. Sensors 18:1878

    Article  CAS  PubMed Central  Google Scholar 

  31. Xu SC, Zhang YY, Dong K, Wen JN, Zheng CM, Zhao SH (2017) Electrochemical DNA biosensor based on graphene oxide-chitosan hybrid nanocomposites for detection of Escherichia coli O157:H7. Int J Electrochem Sci 12:3443–3458

    Article  CAS  Google Scholar 

  32. Devaraj M, Rajendran S, Jebaranjitham JN, Ranjithkumar D, Sathiyaraj M, Manokaran J, Sundaravadivel E, Santhanalakshmi J, Ponce LC (2020) Horseradish peroxidase-immobilized graphene oxide-chitosan gold nanocomposites as highly sensitive electrochemical biosensor for detection of hydrogen peroxide. J Electrochem Soc 167:147517

    Article  CAS  Google Scholar 

  33. Juska VB, Pemble ME (2020) A dual-enzyme, micro-band array biosensor based on the electrodeposition of carbon nanotubes embedded in chitosan and nanostructured Au-foams on microfabricated gold band electrodes. Analyst 145:402–414

    Article  CAS  PubMed  Google Scholar 

  34. Kim HS, Lee JS, Il Kim M (2020) Poly-gamma-glutamic acid/chitosan hydrogel nanoparticles entrapping glucose oxidase and magnetic nanoparticles for glucose biosensing. J Nanosci Nanotechnol 20:5333–5337

    Article  CAS  PubMed  Google Scholar 

  35. Devarakonda S, Singh R, Bhardwaj J, Jang J (2017) Cost-effective and handmade paper-based immunosensing device for electrochemical detection of influenza virus. Sensors 17:2597

    Article  PubMed Central  CAS  Google Scholar 

  36. Sarkar T, Bohidar HB, Solanki PR (2018) Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. Int J Biol Macromol 109:687–697

    Article  CAS  PubMed  Google Scholar 

  37. Soares AC, Soares JC, Rodrigues VC, Oliveira ON, Mattoso LHC (2020) Controlled molecular architectures in microfluidic immunosensors for detecting Staphylococcus aureus. Analyst 145:6014–6023

    Article  CAS  PubMed  Google Scholar 

  38. Hills KD, Oliveira DA, Cavallaro ND, Gomes CL, McLamore ES (2018) Actuation of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst 143:1650–1661

    Article  CAS  PubMed  Google Scholar 

  39. Mane S, Narmawala R, Chatterjee S (2018) Selective recognition of atropine in biological fluids and leaves of datura stramonium employing a carbon nanotube-chitosan film based biosensor. New J Chem 42:10852–10860

    Article  CAS  Google Scholar 

  40. Palanisamy S, Thangavelu K, Chen SM, Gnanaprakasam P, Velusamy V, Liu XH (2016) Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples. Carbohydr Polym 151:401–407

    Article  CAS  PubMed  Google Scholar 

  41. AL-Mokaram AMAAA, Yahya R, Abdi MM, Mahmud HNME (2016) One-step electrochemical deposition of polypyrrole-chitosan-iron oxide nanocomposite films for non-enzymatic glucose biosensor. Mater Lett 183:90–93

    Article  CAS  Google Scholar 

  42. Vasile C (2018) Polymeric nanocomposites and nanocoatings for food packaging: a review. Materials 11:1834

    Article  PubMed Central  CAS  Google Scholar 

  43. Souza VGL, Pires JRA, Rodrigues C, Coelhoso IM, Fernando AL (2020) Chitosan composites in packaging industry-current trends and future challenges. Polymers 12:417

    Article  CAS  PubMed Central  Google Scholar 

  44. Garavand F, Cacciotti I, Vahedikia N, Rehman A, Tarhan O, Akbari-Alavijeh S, Shaddel R, Rashidinejad A, Nejatian M, Jafarzadeh S, Azizi-Lalabadi M, Khoshnoudi-Nia S, Jafari SM (2020) A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging. Crit Rev Food Sci Nutr 12:1–34

    CAS  Google Scholar 

  45. Kumar N, Neeraj P, Trajkovska Petkoska A (2021) Improved shelf life and quality of tomato (solanum lycopersicum l.) by using chitosan-pullulan composite edible coating enriched with pomegranate peel extract. ACS Food Sci Technol 1:500–510

    Article  CAS  Google Scholar 

  46. Rambabu K, Bharath G, Banat F, Show PL, Cocoletzi HH (2019) Mango leaf extract incorporated chitosan antioxidant film for active food packaging. Int J Biol Macromol 126:1234–1243

    Article  CAS  Google Scholar 

  47. Alvarez MV, Ponce AG, Moreira MD (2013) Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT Food Sci Technol 50:78–87

    Article  CAS  Google Scholar 

  48. Nair MS, Saxena A, Kaur C (2018) Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava l.). Food Chem 240:245–252

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez-Locarno M, Pautt YM, Albis A, Lopez EF, Tovar CDG (2020) Assessment of chitosan-rue (Ruta graveolens l.) essential oil-based coatings on refrigerated cape gooseberry (Physalis peruviana l.) quality. Appl Sci 10:2684

    Article  CAS  Google Scholar 

  50. Ozdemir KS, Gokmen V (2019) Effect of chitosan-ascorbic acid coatings on the refrigerated storage stability of fresh-cut apples. Coatings 9:503

    Article  CAS  Google Scholar 

  51. Wagle BR, Upadhyay A, Shrestha S, Arsi K, Upadhyaya I, Donoghue AM, Donoghue DJ (2019) Pectin or chitosan coating fortified with eugenol reduces Campylobacter jejuni on chicken wingettes and modulates expression of critical survival genes. Poult Sci 98:1461–1471

    Article  CAS  PubMed  Google Scholar 

  52. Yaghoubi M, Ayaseh A, Alirezalu K, Nemati Z, Pateiro M, Lorenzo JM (2021) Effect of chitosan coating incorporated with artemisia fragrans essential oil on fresh chicken meat during refrigerated storage. Polymers 13:716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Montano-Sanchez E, Torres-Martinez BDM, Vargas-Sanchez RD, Huerta-Leidenz N, Sanchez-Escalante A, Beriain MJ, Torrescano-Urrutia GR (2020) Effects of chitosan coating with green tea aqueous extract on lipid oxidation and microbial growth in pork chops during chilled storage. Foods 9:766

    Article  CAS  PubMed Central  Google Scholar 

  54. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    Article  CAS  Google Scholar 

  55. de Fatima FSN, Pires AC, Camilloto GP, Santiago-Silva P, Espitia PJ, Silva WA (2009) Recent patents on active packaging for food application. Recent Pat Food Nutr Agric 1:171–178

    Article  Google Scholar 

  56. Liu YW, Wang SY, Lan WT, Qin W (2017) Fabrication and testing of PVA/chitosan bilayer films for strawberry packaging. Coatings 7:109

    Article  CAS  Google Scholar 

  57. Souza VGL, Pires JRA, Vieira ET, Coelhoso IM, Duarte MP, Fernando AL (2019) Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: from in vitro assays to application in fresh poultry meat. Food Hydrocoll 89:241–252

    Article  CAS  Google Scholar 

  58. Jakubowska E, Gierszewska M, Nowaczyk J, Olewnik-Kruszkowska E (2021) The role of a deep eutectic solvent in changes of physicochemical and antioxidative properties of chitosan-based films. Carbohydr Polym 255:117527

    Article  CAS  PubMed  Google Scholar 

  59. Jhaveri J, Raichura Z, Khan T, Momin M, Omri A (2021) Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules 26:272

    Article  CAS  PubMed Central  Google Scholar 

  60. Choi C, Nam JP, Nah JW (2016) Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem 33:1–10

    Article  CAS  Google Scholar 

  61. Rizeq BR, Younes NN, Rasool K, Nasrallah GK (2019) Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles. Int J Mol Sci:20

    Google Scholar 

  62. Mahmood MA, Madni A, Rehman M, Rahim MA, Jabar A (2019) Ionically cross-linked chitosan nanoparticles for sustained delivery of docetaxel: fabrication, post-formulation and acute oral toxicity evaluation. Int J Nanomedicine 14:10035–10046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lakshmanan VK, Snima KS, Bumgardner JD, Nair SV, Jayakumar R (2011) Chitosan-based nanoparticles in cancer therapy. Adv Polym Sci 243:55–91

    Article  CAS  Google Scholar 

  64. Budi S, Suliasih BA, Rahmawati I, Erdawati (2020) Size-controlled chitosan nanoparticles prepared using ionotropic gelation. ScienceAsia 46:457–461

    Article  CAS  Google Scholar 

  65. Desai KGH (2016) Chitosan nanoparticles prepared by ionotropic gelation: an overview of recent advances. Crit Rev Ther Drug 33:107–158

    Article  Google Scholar 

  66. Xue MY, Hu S, Lu YF, Zhang Y, Jiang XT, An S, Guo YB, Zhou X, Hou HM, Jiang C (2015) Development of chitosan nanoparticles as drug delivery system for a prototype capsid inhibitor. Int J Pharm 495:771–782

    Article  CAS  PubMed  Google Scholar 

  67. Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456:31–40

    Article  CAS  PubMed  Google Scholar 

  68. El-Shabouri MH (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249:101–108

    Article  CAS  PubMed  Google Scholar 

  69. Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Jeevithan E, Hu XW, Shin S, Wang MH (2020) Dual stimuli-responsive release of aptamer AS1411 decorated erlotinib loaded chitosan nanoparticles for non-small-cell lung carcinoma therapy. Carbohydr Polym 245:116407

    Article  CAS  PubMed  Google Scholar 

  70. Sabourian P, Ji J, Lotocki V, Moquin A, Hanna R, Frounchi M, Maysinger D, Kakkar A (2020) Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. J Mater Chem B 8:7275–7287

    Article  CAS  PubMed  Google Scholar 

  71. Fernandez-Quiroz D, Loya-Duarte J, Silva-Campa E, Arguelles-Monal W, Sarabia-Sainz AI, Lucero-Acuna A, del Castillo-Castro T, San Roman J, Lizardi-Mendoza J, Burgara-Estrella AJ, Castaneda B, Soto-Puebla D, Pedroza-Montero M (2019) Temperature stimuli-responsive nanoparticles from chitosan-graft-poly(N-vinylcaprolactam) as a drug delivery system. J Appl Polym Sci 136:47831

    Article  CAS  Google Scholar 

  72. Ansari S, Masoum S (2020) Ultrasound-assisted dispersive solid-phase microextraction of capecitabine by multi-stimuli responsive molecularly imprinted polymer modified with chitosan nanoparticles followed by HPLC analysis. Microchim Acta 187:1–11

    Article  CAS  Google Scholar 

  73. Mohapatra A, Harris MA, Levine D, Ghimire M, Jennings JA, Morshed BI, Haggard WO, Bumgardner JD, Mishra SR, Fujiwara T (2018) Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles. J Biomed Mater Res B 106:2169–2176

    Article  CAS  Google Scholar 

  74. Sabourian P, Tavakolian M, Yazdani H, Frounchi M, van de Ven TGM, Maysinger D, Kakkar A (2020) Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. J Control Release 317:216–231

    Article  CAS  PubMed  Google Scholar 

  75. Wei X, Liao JH, Davoudi Z, Zheng H, Chen JR, Li D, Xiong X, Yin YH, Yu XX, Xiong JH, Wang Q (2018) Folate receptor-targeted and GSH-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia. Mar Drugs 16:439

    Article  CAS  PubMed Central  Google Scholar 

  76. Beidokhti HRN, Ghaffarzadegan R, Mirzakhanlouei S, Ghazizadeh L, Dorkoosh FA (2017) Preparation, characterization, and optimization of folic acid-chitosan-methotrexate core-shell nanoparticles by box-behnken design for tumor-targeted drug delivery. AAPS Pharm Sci Tech 18:115–129

    Article  CAS  Google Scholar 

  77. Antoniraj MG, Ayyavu M, Henry LJK, Rao GN, Natesan S, Sundar DS, Kandasamy R (2018) Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery. Drug Dev Ind Pharm 44:365–376

    Article  CAS  PubMed  Google Scholar 

  78. Taghavi S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM (2017) Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett 400:1–8

    Article  CAS  PubMed  Google Scholar 

  79. Uthaman S, Huh KM, Park IK (2018) Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater Res 22:1–11

    Article  CAS  Google Scholar 

  80. Asik MD, Kaplan M, Çetin B, Saglam N (2021) Synthesis of iron oxide core chitosan nanoparticles in a 3D printed microfluidic device. J Nanopart Res 23:1–11

    Article  CAS  Google Scholar 

  81. Casettari L, Illum L (2014) Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 190:189–200

    Article  CAS  PubMed  Google Scholar 

  82. Bellich B, D'Agostino I, Semeraro S, Gamini A, Cesaro A (2016) “The good, the bad and the ugly” of chitosans. Mar Drugs 14:99

    Article  PubMed Central  CAS  Google Scholar 

  83. Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS (2020) Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. Int J Biol Macromol 150:1072–1083

    Article  CAS  PubMed  Google Scholar 

  85. Kurakula M, Naveen NR (2020) Prospection of recent chitosan biomedical trends: evidence from patent analysis (2009-2020). Int J Biol Macromol 165:1924–1938

    Article  CAS  PubMed  Google Scholar 

  86. Palekar G, Bhalodiya HP, Archik S, Trivedi K (2021) Retrospective study on implantation of autologous-cultured osteoblasts for the treatment of patients with avascular necrosis of the femoral head. Orthop Res Rev 13:15–23

    PubMed  PubMed Central  Google Scholar 

  87. Rajabi M, McConnell M, Cabral J, Ali MA (2021) Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr Polym 260:117768

    Article  CAS  PubMed  Google Scholar 

  88. Vaz JM, Taketa TB, Hernandez-Montelongo J, Chevallier P, Cotta MA, Mantovani D, Beppu MM (2018) Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight. Appl Surf Sci 445:478–487

    Article  CAS  Google Scholar 

  89. Yildirim-Aksoy M, Beck BH (2017) Antimicrobial activity of chitosan and a chitosan oligomer against bacterial pathogens of warmwater fish. J Appl Microbiol 122:1570–1578

    Article  CAS  PubMed  Google Scholar 

  90. Kravanja G, Primozic M, Knez Z, Leitgeb M (2019) Chitosan-based (nano)materials for novel biomedical applications. Molecules 24:1960

    Article  CAS  PubMed Central  Google Scholar 

  91. Alavarse AC, Silva FWD, Colque JT, da Silva VM, Prieto T, Venancio EC, Bonvent JJ (2017) Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C Mater Biol Appl 77:271–281

    Article  CAS  PubMed  Google Scholar 

  92. Murali S, Aparna V, Suresh MK, Biswas R, Jayakumar R, Sathianarayanan S (2018) Amphotericin B loaded sulfonated chitosan nanoparticles for targeting macrophages to treat intracellular Candida glabrata infections. Int J Biol Macromol 110:133–139

    Article  CAS  Google Scholar 

  93. Nithya S, Nimal TR, Baranwal G, Suresh MK, Anju CP, Kumar VA, Mohan CG, Jayakumar R, Biswas R (2018) Preparation, characterization and efficacy of lysostaphin-chitosan gel against Staphylococcus aureus. Int J Biol Macromol 110:157–166

    Article  CAS  PubMed  Google Scholar 

  94. Senthilkumar P, Yaswant G, Kavitha S, Chandramohan E, Kowsalya G, Vijay R, Sudhagar B, Kumar DSRS (2019) Preparation and characterization of hybrid chitosan-silver nanoparticles (chi-Ag NPs); a potential antibacterial agent. Int J Biol Macromol 141:290–298

    Article  CAS  PubMed  Google Scholar 

  95. Rubina MS, Vasil'kov AY, Naumkin AV, Shtykova EV, Abramchuk SS, Alghuthaymi MA, Abd-Elsalam K (2017) Synthesis and characterization of chitosan-copper nanocomposites and their fungicidal activity against two sclerotia-forming plant pathogenic fungi. J Nanostructure Chem 7:249–258

    Article  CAS  Google Scholar 

  96. Nehra P, Chauhan RP, Garg N, Verma K (2018) Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br J Biomed Sci 75:13–18

    Article  CAS  PubMed  Google Scholar 

  97. Saranya TS, Rajan VK, Biswas R, Jayakumar R, Sathianarayanan S (2018) Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int J Biol Macromol 110:227–233

    Article  CAS  PubMed  Google Scholar 

  98. Savitha A, SriRekha A, Vijay R, Ashwija CC, Jaykumar T (2019) An in vivo comparative evaluation of antimicrobial efficacy of chitosan, chlorhexidine gluconate gel and their combination as an intracanal medicament against Enterococcus faecalis in failed endodontic cases using real time polymerase chain reaction (qPCR). Saudi Dent J 31:360–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Raveendran NT, Mohandas A, Menon RR, Menon AS, Biswas R, Jayakumar R (2019) Ciprofloxacin and fluconazole containing fibrin-nanoparticle-incorporated chitosan bandages for the treatment of polymicrobial wound infections. ACS Appl Bio Mater 2:243–254

    Article  CAS  Google Scholar 

  100. Wallace LA, Gwynne L, Jenkins T (2019) Challenges and opportunities of pH in chronic wounds. Ther Deliv 10:719–735

    Article  CAS  PubMed  Google Scholar 

  101. Percival NJ (2002) Classification of wounds and their management. Surgery (Oxford) 20:114–117

    Article  Google Scholar 

  102. Cutting KF (2010) Wound dressings: 21st century performance requirements. J Wound Care 19:4–9

    Article  Google Scholar 

  103. Saporito F, Sandri G, Rossi S, Bonferoni MC, Riva F, Malavasi L, Caramella C, Ferrari F (2018) Freeze dried chitosan acetate dressings with glycosaminoglycans and traxenamic acid. Carbohydr Polym 184:408–417

    Article  CAS  PubMed  Google Scholar 

  104. Zhang YW, Jiang MM, Zhang YQ, Cao QP, Wang X, Han Y, Sun GW, Li Y, Zhou JH (2019) Novel lignin-chitosan-PVA composite hydrogel for wound dressing. Mater Sci Eng C 104:110002

    Article  CAS  Google Scholar 

  105. Koosehgol S, Ebrahimian-Hosseinabadi M, Alizadeh M, Zamanian A (2017) Preparation and characterization of in situ chitosan/polyethylene glycol fumarate/thymol hydrogel as an effective wound dressing. Mater Sci Eng C 79:66–75

    Article  CAS  Google Scholar 

  106. Mishra SK, Mary DS, Kannan S (2017) Copper incorporated microporous chitosan-polyethylene glycol hydrogels loaded with naproxen for effective drug release and anti-infection wound dressing. Int J Biol Macromol 95:928–937

    Article  CAS  PubMed  Google Scholar 

  107. Yassue-Cordeiro PH, Zandonai CH, Genesi BP, Lopes PS, Sanchez-Lopez E, Garcia ML, Fernandes-Machado NRC, Severino P, Souto EB, da Silva CF (2019) Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics 11:535

    Article  CAS  Google Scholar 

  108. Abdel-Mohsen AM, Frankova J, Abdel-Rahmang RM, Salem AA, Sahffie NM, Kubena I, Jancar J (2020) Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. II. Multifunctional properties to promote cutaneous wound healing. Int J Pharm 582:119349

    Article  CAS  PubMed  Google Scholar 

  109. Lew WK, Weaver FA (2008) Clinical use of topical thrombin as a surgical hemostat. Biologics 2:593

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chaturvedi A, Dowling MB, Gustin JP, Scalea TM, Raghavan SR, Pasley JD, Narayan M (2017) Hydrophobically modified chitosan gauze: a novel topical hemostat. J Surg Res 207:45–52

    Article  CAS  PubMed  Google Scholar 

  111. Samudrala S (2008) Topical hemostatic agents in surgery: a surgeon’s perspective. AORN J 88:S2–S11

    Article  PubMed  Google Scholar 

  112. Khoshmohabat H, Paydar S, Kazemi HM, Dalfardi B (2016) Overview of agents used for emergency hemostasis. Trauma Mon 21:e26023

    Article  PubMed  PubMed Central  Google Scholar 

  113. Shen JL, Nada AA, Abou-Zeid NY, Hudson SM (2020) Synthesis of chitosan iodoacetamides via carbodiimide coupling reaction: effect of degree of substitution on the hemostatic properties. Carbohydr Polym 229:115522

    Article  CAS  PubMed  Google Scholar 

  114. Sundaram MN, Amirthalingam S, Mony U, Varma PK, Jayakumar R (2019) Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. Int J Biol Macromol 129:936–943

    Article  CAS  PubMed  Google Scholar 

  115. Hu Z, Zhang DY, Lu ST, Li PW, Li SD (2018) Chitosan-based composite materials for prospective hemostatic applications. Mar Drugs 16:273

    Article  PubMed Central  CAS  Google Scholar 

  116. Radwan-Praglowska J, Piatkowski M, Deineka V, Janus L, Korniienko V, Husak E, Holubnycha V, Liubchak I, Zhurba V, Sierakowska A, Pogorielov M, Bogdal D (2019) Chitosan-based bioactive hemostatic agents with antibacterial properties-synthesis and characterization. Molecules 24:2629

    Article  PubMed Central  Google Scholar 

  117. Jesus S, Marques AP, Duarte A, Soares E, Costa JP, Colaco M, Schmutz M, Som C, Borchard G, Wick P, Borges O (2020) Chitosan nanoparticles: shedding light on immunotoxicity and hemocompatibility. Front Bioeng Biotechnol 8:100

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kim GH, Im JN, Kim TH, Lee GD, Youk JH, Doh SJ (2018) Preparation and characterization of calcium carboxymethyl cellulose/chitosan blend nonwovens for hemostatic agents. Text Res J 88:1902–1911

    Article  CAS  Google Scholar 

  119. Bal-Ozturk A, Karal-Yilmaz O, Akguner ZP, Aksu S, Tas A, Olmez H (2019) Sponge-like chitosan-based nanostructured antibacterial material as a topical hemostat. J Appl Polym Sci 136:47522

    Article  CAS  Google Scholar 

  120. Sun X, Tang ZH, Pan M, Wang ZC, Yang HQ, Liu HQ (2017) Chitosan/kaolin composite porous microspheres with high hemostatic efficacy. Carbohydr Polym 177:135–143

    Article  CAS  PubMed  Google Scholar 

  121. Zhang Y, Guan J, Wu JM, Ding S, Yang J, Zhang JH, Dong AJ, Deng LD (2019) N-alkylated chitosan/graphene oxide porous sponge for rapid and effective hemostasis in emergency situations. Carbohydr Polym 219:405–413

    Article  CAS  PubMed  Google Scholar 

  122. Ranjbar J, Koosha M, Chi H, Ghasemi A, Zare F, Abdollahifar MA, Darvishi M, Li TD (2021) Novel chitosan/gelatin/oxidized cellulose sponges as absorbable hemostatic agents. Cellul 28:3663–3675

    Article  CAS  Google Scholar 

  123. Sundaram MN, Mony U, Varma PK, Rangasamy J (2021) Vasoconstrictor and coagulation activator entrapped chitosan based composite hydrogel for rapid bleeding control. Carbohydr Polym 258:117634

    Article  CAS  PubMed  Google Scholar 

  124. Lanza R, Langer R, Vacanti JP, Atala A (2007) Principles of tissue engineering. Academic Press, San Diego

    Google Scholar 

  125. Islam MM, Shahruzzaman M, Biswas S, Sakib MN, Rashid TU (2020) Chitosan based bioactive materials in tissue engineering applications – a review. Bioact Mater 5:164–183

    Article  PubMed  PubMed Central  Google Scholar 

  126. Huang L, Zhu ZY, Wu DW, Gan WD, Zhu SS, Li WQ, Tian JH, Li LH, Zhou CR, Lu L (2019) Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydr Polym 225:115110

    Article  CAS  PubMed  Google Scholar 

  127. Sivashanmugam A, Charoenlarp P, Deepthi S, Rajendran A, Nair SV, Iseki S, Jayakumar R (2017) Injectable shear-thinning CaSO4/FGF-18-incorporated chitin PLGA hydrogel enhances bone regeneration in mice cranial bone defect model. ACS Appl Mater Interfaces 9:42639–42652

    Article  CAS  PubMed  Google Scholar 

  128. Sundaram MN, Deepthi S, Mony U, Shalumon KT, Chen JP, Jayakumar R (2019) Chitosan hydrogel scaffold reinforced with twisted poly(l lactic acid) aligned microfibrous bundle to mimic tendon extracellular matrix. Int J Biol Macromol 122:37–44

    Article  CAS  Google Scholar 

  129. Lin IC, Wang TJ, Wu CL, Lu DH, Chen YR, Yang KC (2020) Chitosan-cartilage extracellular matrix hybrid scaffold induces chondrogenic differentiation to adipose -derived stem cells. Regen Ther 14:238–244

    Article  PubMed  PubMed Central  Google Scholar 

  130. Tamimi M, Rajabi S, Pezeshki-Modaress M (2020) Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application. Int J Biol Macromol 164:389–402

    Article  CAS  PubMed  Google Scholar 

  131. Habibizadeh M, Nadri S, Fattahi A, Rostamizadeh K, Mohammadi P, Andalib S, Hamidi M, Forouzideh N (2021) Surface modification of neurotrophin-3 loaded PCL/chitosan nanofiber/net by alginate hydrogel microlayer for enhanced biocompatibility in neural tissue engineering J Biomed Mater Res A 1–18. https://doi.org/10.1002/jbm.a.37208

  132. Anggrarista KAN, Cecilia PH, Nagoro AAB, Saskianti T, Surboyo MDC (2021) SHED, PRF, and chitosan as three-dimensional of tissue engineering for dental pulp regeneration. Dent Hypotheses 12:43–46

    Article  CAS  Google Scholar 

  133. Sowmya S, Mony U, Jayachandran P, Reshma S, Kumar RA, Arzate H, Nair SV, Jayakumar R (2017) Tri-layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv Healthc Mater 6:1601251

    Article  CAS  Google Scholar 

  134. Kumar A, Sivashanmugam A, Deepthi S, Bumgardner JD, Nair SV, Jayakumar R (2016) Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis. Carbohydr Polym 140:144–153

    Article  CAS  Google Scholar 

  135. Li WY, He XH, Liu K, Wen W, Lu L, Liu MX, Zhou CR, Luo BH (2020) Creating ultrastrong and osteogenic chitin nanocomposite hydrogels via chitin whiskers with different surface chemistries. ACS Sustain Chem Eng 8:17487–17499

    Article  CAS  Google Scholar 

  136. Thibault MH, Comeau C, Vienneau G, Robichaud J, Brown D, Bruening R, Martin LJ, Djaoued Y (2020) Assessing the potential of boronic acid/chitosan/bioglass composite materials for tissue engineering applications. Mater Sci Eng C 110:110674

    Article  CAS  Google Scholar 

  137. Sayyar S, Murray E, Thompson BC, Chung J, Officer DL, Gambhir S, Spinks GM, Wallace GG (2015) Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater Chem B 3:481–490

    Article  CAS  PubMed  Google Scholar 

  138. Ferreira NN, Granja S, Boni FI, Prezotti FG, Ferreira LMB, Cury BSF, Reis RM, Baltazar F, Gremiao MPD (2020) Modulating chitosan-PLGA nanoparticle properties to design a co-delivery platform for glioblastoma therapy intended for nose-to-brain route. Drug Deliv Transl Res 10:1729–1747

    Article  CAS  PubMed  Google Scholar 

  139. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2:204–226

    Article  Google Scholar 

  140. Sivashanmugam A, Kumar RA, Priya MV, Nair SV, Jayakumar R (2015) An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J 72:543–565

    Article  CAS  Google Scholar 

  141. Abrica-Gonzalez P, Zamora-Justo JA, Sotelo-Lopez A, Vazquez-Martinez GR, Balderas-Lopez JA, Munoz-Diosdado A, Ibanez-Hernandez M (2019) Gold nanoparticles with chitosan, N-acylated chitosan, and chitosan oligosaccharide as DNA carriers. Nanoscale Res Lett 14:1–14

    Article  CAS  Google Scholar 

  142. Lichtenberg SS, Nuti K, DeRouchey J, Tsyusko OV, Unrine JM (2020) Efficacy of chitosan/double-stranded RNA polyplex nanoparticles for gene silencing under variable environmental conditions. Environ Sci Nano 7:1582–1592

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayakumar Rangasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amirthalingam, S., Rajendran, A.K., Mani, P., Rangasamy, J. (2021). Perspectives and Challenges of Using Chitosan in Various Biological Applications. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials III. Advances in Polymer Science, vol 287. Springer, Cham. https://doi.org/10.1007/12_2021_107

Download citation

Publish with us

Policies and ethics